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What does “phylogenomics”

mean??

1. The study of genome evolution in a
phylogenetic context

2. The inference of species
phylogenies with genome data

3. The inference of species
phylogenies with data from lots of

genes
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So you want to study
molecular evolution In
organism X...

1. Design experiment

2. Collect raw data

3. Analysis - Preprocess data

4. Analysis - Molecular evolution
5. Interpret results



In contrast to most other talks,
I’m going to focus on these
first three steps

1. Design experiment

2. Collect raw data

3. Analysis - Preprocess data

4. Analysis - Molecular evolution
5. Interpret results



As sequencing methods
become more sophisticated,
preprocessing data becomes a
bigger and bigger part of
molecular evolution projects



Preprocessing includes:

- Filtering

- Data wrangling (eg formatting)
- Assembly

- Mapping

- Annotation

- Homology evaluation



Understanding sequencing and
preprocessing Is essential to:

- Implement empirical projects

- Understand errors and
ascertainment bias in data

- Design methods that address
contemporary challenges



Part I

Collecting and
preprocessing
sequence data




Number of taxa

Phylodiversity

The

Future...

“classical” molecular
phylogenetics

Phylogenomics

Number of genes



DNA sequencing is
getting cheaper




The Gartner Hype Cycle”

VISIBILITY

Peak of Inflated Expectations

Plateau of Productivity

Slope of Enlightenment

Trough of Disillusionment

Technology Trigger

* Not really a cycle
http://en.wikipedia.org/wiki/Hype_cycle#mediaviewer/File:Gartner_Hype_Cycle.svg



Will cheap sequence data
allow us to answer all our
questions”?

Of course not.



Should we approach
problems with more data or
improved analysis methods?

This Is a false dichotomy.

We need both!



Are other types of data now
obsolete”

No!

We have entirely new
opportunities for
Integrating genomic,
morphological, and
functional perspectives



Why collect data from lots of genes?
- Gives broad perspective

- Many hard problems will require lots
of data

- Lots of data makes some aspects of
Inference easier

- These data are useful for things
besides building trees

- It can be much cheaper to collect a
lot of data than a little bit of data



Design
decisions




There aren’t just more
seguences In each molecular
evolution analysis...



There are more ways to collect
and analyze molecular
evolution data.



Which approach is right for
you®?



Framing questions:

What do you want to know??
What do you already know?

What material will you have
available (DNA, RNA, or
both)?



Central technical
question:

Wil you enrich your sample
for particular genome regions
prior to sequencing?



Enrichment reduces the
amount of sequence data you
need to collect.



It allows you to sequence
homologous genome regions
across multiple individuals

and species.



Enrichment spectrum

Directed PCR ¢

‘/Whole genome Targeted
enrichment

¢

Whole” transcriptome

o~ NAD tag

 -—
Increasing enrichment
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Whole genome

- No enrichment.

- In a phylogenetic context,
currently only cost effective
for small genomes.

- Often need transcriptome
data to annotate genes.



Directed PCR ¢

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o RAD tag

 -—
Increasing enrichment



Whole transcriptome

- Enriched for expressed
protein coding genes

- There is no One True
Transcriptome



Directed PCR ¢

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o RAD tag

 -—
Increasing enrichment



Targeted enrichment

- Use hybridization to enrich
particular regions

- Works well even on
degraded DNA

- Need to synthesize probes
specific to each region



Directed PCR -

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o RAD tag

 -—
Increasing enrichment



RAD tag

- Enriched for randomly
distributed, but consistent,
genome regions

- No need for specific probes



Directed PCR -

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o RAD tag

 -—
Increasing enrichment



Directed PCR

- Simple and cheap for a small
number of genes

- Doesn’t scale so well to
many genes



As prices fall, the best approach
tends to move to the left.

Directed PCR ¢

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o~ NAD tag

 -—
Increasing enrichment



Back to the big
question...



Is directed PCR, targeted
enrichment,
transcriptome, or
genome sequencing
better for phylogenetics?




Nonsensical question!

We used to have a small number of
tools for enrichment and
sequencing.

We used them
for everything.

(Smithsonian)



Nonsensical question!

Now we have an amazing set of

specialized tools. T‘ IC, ”I

Can fit the tool
to the project. ! Q"




Many features of enrichment
strategies are an advantage
for some projects and a
disadvantage for other
projects.

eg, sometimes ascertainment

bias Is good and sometimes it
IS bad



The major conceptual difference
between these methods is
whether genes are selected
before or after sequencing




Select genes before sequencing

Directed PCR ¢

JWhoIe genome Targeted
enrichment

¢

Whole” transcriptome

o~ NAD tag

 -—
Increasing enrichment



Select genes after sequencing

Directed PCR ¢

‘/Whole genome Targeted
enrichment

¢

Whole” transcriptome

o~ NAD tag

 -—
Increasing enrichment



Before After

— ‘Sequence at random\

Amplify and (Identify homologous\
seqguence seguences and
selected genes evaluate paralogy

from all

sequenced genes \ Assemble matrix \

Phylogenetic ' Phylogenetic
Inference inference

— —




Selecting after sequencing is a
pain if you already knew what
you wanted before you
started...

But a huge advantage if you
don’t know ahead of time.




ldentifying and
selecting
homologs
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Most
Informative




Phylogenetic tools build trees
from homologous characters

Most phylogenetic tools
assume character homology,
they can't evaluate homology

We need to make a first pass
with phenetic tools



Some tools evaluate both
nhomology and orthology with
phenetic methods

Use phenetic tools to add new
sequences Iinto an existing matrix of
pre-selected orthologs

HamStR
dx.doi.org/10.1186/1471-2148-9-157



Some tools evaluate both
nhomology and orthology with
phenetic methods

Use phenetic tools to identify
orthologs de novo

Nice review by Chen et al 2007
dx.doi.org/10.1371/journal.pone.0000383
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Figure 1. OrthoMCL graph construction between two species,
including the establishment of co-ortholog relationships. Solid lines
connecting A1 and B1 represent putative ortholog relationships
identified by the ‘reciprocal best hit’ (RBH) rule. Dotted lines (e.g. those
connecting A1 with A2 and A3, or B1 with B2) represent putative in-
paralog relationships within each species, identified using the ‘re-
ciprocal better hit’ rule. Putative co-ortholog relationships, indicated by
dashed gray lines, connect in-paralogs across species boundaries (e.g.
A3 and B2).

doi:10.1371/journal.pone.0000383.g001

Chen et al 2010 (dx.doi.org/10.1371/journal.pone.0000383)



Some tools evaluate homology
with phenetic methods and
orthology with phylogenetic
methods



Spemes C

Species A Species B




This Is our approach...



Put all sequences for all taxa in
a study into a hat

Make all pairwise sequence
comparisons

Construct a graph where
Nnodes are sequences and
edges Iindicate similarity



b

Nodes are sequences, thickness of edges indicate similarity
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Nodes are sequences, thickness of edges indicate similarity
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Nodes are sequences, thickness of edges |nd|cate similarity




“The paralogy problem”

But paralogs aren’t inherently
a problem

The problem is misascribing
paralogs as orthologs
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Species A Species B
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Gene divergence
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Once we have subtrees of
orthologs...

Align each ortholog

Bulld trees



/7 taxa, 150 Genes, >20k aa

White cells indicates sampled gene
50.9% gene sampling

Dunn et al., 2008
doi:10.1038/nature06614



Can do this with:

https://bitbucket.org/caseywdunn/agalma

g Bltbucket Repositories ~ Create Q ownerirepository

agalma

& caseywdunn ¥ Foliowin #2 Share &, Clione = =C Fork >3 Compare Ty Pull request
se u g a

Overview Source Commits Pull requests Issues 4 Downloads 3 &

Agalma is deveioped by the Dunn Lab at Brown University.
SSH~ gitébitbucket.org: caseywdunn/ago
See TUTORIAL for an example of how to use Agalma with a sample dataset.

Overview of Agalma Yy W < *

Agaima s a set of analysis pipelines for transcriptome assembly (paired-end lllumina data) and 1 0 Ol 3
phylogenetic analysis. It can import gene predictions from other sources (eg, assembled non- Branch Tags Forks  Followers
IBumina transcriptomes or gene models from annotated genomes), enabling broadly-sampled

*phylogenomic” analyses. Owner Casey Dunn

Access level Public

Agalma provides a completely automated analysis workfiow that filters and assembles the data Type Git

under default parameters, and records rich diagnostics. The same goes for alignment, Last updated 2013-02-19
transiation, and phylogenetic analysis. You can then evaluate these diagnostics to spot problems Created 2013-02-07

and examine the success of your analyses, the quality of the orignal data, and the Size 1.9 MB (download)

appropriateness of the default parameters. You can then rerun subsets of the pipelines with
optimized parameters as needed,

The workflow is highly optimized to reduce the RAM and computational requirements, as well as
the disk space used. It logs detalied stats about computer resource utilization to heip you
understand what type of computational resources you need to analyze your data and to further
optimize your resource utilization.

The main functionality of this workfiow is to:

« assess read quality with the FastQC package

« remove clusters In which one or both reads have lllumina adapters (resulting from small
inserts)

« remove custers where one or both reads s of low mean quality

= randomize the sequences In the same order in both pairs to make obtaining random
subsets easy

« assemble and annotate rRNA sequences based on a subassembly of the data

« remove clusters in which one or both reads map to rRNA sequences



https://bitbucket.org/caseywdunn/agalma

Homology evaluation Is
poised to undergo a radical
transition in the next few
years...



Rather than:

1) Use phonetic tools to
identify homologous
sequences

2) Use phylogenetic tools to
identify orthologs

3) Use phylogenetic tools to
Infer species relationships



WERMLL

1) Use phenetic tools to
identify homologous
sequences

2) Use phylogenetic tools to
simultaneously infer gene
trees and species trees by
modeling gene gain/ loss






A closer look at
each enrichment

strategy




Whole genome
(de novo assembly)




Short read
sequencing




Sample preparation



Library preparation usually
Includes:

Fragmentation
Size selection
Adapter integration

Amplification



Why fragment?

1. Most sequencers require
the Input material to have a
particular size range

2. 1o make sequencing
coverage more uniform



Starting

material Fragment ¢

Fragments ——— —— —— —— ———

Prepare library, l
sequence



Library preparation options:

Get a library preparation kit
from the sequencer vender

Get a third party library
preparation Kit

Make the library from scratch



The most common library
preparation problems:

Poor input material
Over-amplification

Poor size selection






For many studies, sample
prep Is already more
expensive than sequencing.

We are approaching a point
where sequencing costs are

negligible.



Data are usually delivered
IN fastg format



fastg example:

@HWI-ST625:51:CO02UNACXX:7:1101:1179:1962 1:N:0:TTAGGC
CTAGNTGTTGAAGAGAAGGTTCAAGAACCAAAAGAAAGCTCACAACAACATATGGT

+
=AAA#DFDDDHHFDGHEHIAFHHIITIIGICDGAGDHGGIHGEA@BFIHIIIGCQ@S8

@HWI-ST625:51:CO02UNACXX:7:1101:1242:1983 1:N:0:TTAGGC
ATAATTTCAATGACTGGAGTAGTGAAAATGAACATAGATATGAGAATAACCGTAGA

+
ACCCFFFFFGHHHHJJJIJEHIFHIJJJJIJJJJITIJIJJITIJJJIJIIIJJIJJIITIJIdd



Assembly

Annotation






Assembly undoes
fragmentation (and
reduces redundancy).



Starting
material

Prepare library, l
seguence

Assembly |
Final

product



Overlap assemblers that work fine
on large Sanger datasets don’t
scale to these very large data sets

The number of pairwise
comparisons that are needed to
detect overlap become intractable



de Bruijn graph assemblers have
been developed to meet these
challenges

Better defined memory footprint

Simpler comparisons between
seguences



What is a graph?




What is a graph?
Nodes




The first step in de Bruijn graph
assembly Is breaking each read
down into all sequences of k length

actg

actgtcat —> ctgt
tgtc
gtca
tcat



There are 4% possible k-mers
In practice, k is often in the 25-70 range

The k-mers are loaded into a hash

table:
actg

ctgt
tgtc
gtca
tcat

i



A de Bruijn graph is constructed from
the hash table

Each node corresponds to a k-mer
sequence from the hash table

An edge unites each node that
extends another node by one base
pair



A Read Layout B Overlap Graph

: GACCTACA
ACCTACAA
CCTACAAG
CTACAAGT
TACAAGTT
ACAAGTTA
CAAGTTAG
TACAAGTC
ACAAGTCC
CAAGTCCG

o = L [ %] -
L] L1 L1

M X Op 1O 0 X

C de Bruijn Graph TAG

TTA
ol

0 ) )00 <

Schatz et al 2010 (dx.doi.org/10.1101/gr.101360.109)



Paths through the de Bruijn graph are
assembled sequences

These paths can be very complicated
due to sequencing error, snp’s,
splicing variants, repeats, etc

The graphs require considerable post-
processing to simplify them (pop
bubbles, trim dead ends, etc)



(before) (after)

Miller et al 2010 (dx.doi.org/10.1016/].ygeno.2010.03.001)




de novo sequencing and de Bruijn graph
assembly requires very deep sequencing

Typically >100 fold coverage

Even then, assemblies are quite
fragmented

Can’t resolve repeats longer than the
DNA fragments that are sequenced



Paired end sequencing helps by providing
structural information longer than read
length



Most short read sequencers
generate reads from the ends
of the DNA molecules

Read (sequence data)

/ Read (sequence data)

N /\/\ _

DNA molecule



Other tools provide longer range structural
information, e.g.:

- Mate pair sequencing provides
read pairs that are several kb apart

- Moleculo generates virtual long
(~10 kb) reads by preserving
information on which reads come
from the same fragments

- Restriction site mapping



BioNano and Nabsys both map restriction
sites at very large scale

http://www.bionanogenomics.com/technology/irys-technology/

Can be used to stitch together assembly
fragments



http://www.bionanogenomics.com/technology/irys-technology/




A genome sequence on its
own usually isn’t very
Interesting

You also want to have data
about the genome sequence
that tells you where genes,
regulatory elements, and
other features are



A genome sequence on its
own usually isn’t very
Interesting

You also want to have data
about the genome sequence
that tells you where genes,
regulatory elements, and
other features are



Annotation based on
seqguence alone usually has
mixed success

Transcriptome and other
external data greatly facilitate
annotation



Next next generation:

Long reads




Longer reads:
- Make assembly easier

- Have more information (eg
Improved knowledge of
phasing, repeat structure, etc)



lllumina now produces high

quality “short” reads on the
order of 300 bp



Short read error rates

Table 1 Insertion/deletion and substitution errors on read level for benchtop NGS platforms
Indels per Indels per Substitutions Substitutions

Platform Sequencing kit Library Strain Date of sequencing 100 bp read per 100 bp per read
GSJ GSJ Titanium Nebulization / AMPure XP Sakai June 2012 0.4011 1.8351 0.0543 0.2484
MiSeq 2 x 150-bp PE Nextera Sakai June 2012 0.0009 0.0013 0.0921 0.1318
MiSeq 2 x 250-bp PE Nextera Sakai September 2012 0.0009 0.0018 0.0940 0.2033
PGM 100 bp Bioruptor / lon Fragment Library  Sakai July 2011 0.3520 0.3878 0.0929 0.1024
PGM 200 bp lon Xpress Plus Fragment Sakai July 2012 0.3955 0.6811 0.0303 0.0521
PGM 300 bp lon Xpress Plus Fragment Sakai August 2012 0.7054 1.4457 0.0861 0.1765
PGM 400 bp? lon Xpress Plus Fragment Sakai November 2012 0.6722 1.8726 0.0790 0.2202

Error rates were calculated by counting indels and substitutions in the mapping against the EHEC Sakai reference sequence for each uniquely mapped read.
aKit was not officially available during time of study.

http://www.nature.com/nbt/journal/v31/n4/pdf/nbt.2522.pdf

Indel error rates 0.001% to 0.7%

Substitution error rates < 0.1%



Long read platforms now
generate reads >10 kb

But the error rate Is quite high



Error rate comparison

Random
guessing (75%)
PaCBiO(1 40/0)
Oxford
Nanopore(49%7?)

lllumina (0.1%)

0.01%  0.1% 1% 10%  100%



HOw can we use seguence
data with such a high error
rate?

Use high quality short reads to “fix”
low quality long reads prior to

assembly (e.g. https://github.com/
jgurtowski/ectools)


https://github.com/jgurtowski/ectools

Assembly Complexity of Long Reads
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Assembly complexity of long read sequencing
Lee, H*, Gurtowski, J*,Yoo, S, Marcus, S, McCombie, WR, Schatz MC et al. (2014) In preparation

http://schatzlab.cshl.edu/presentations/2014-02-19.Brown.Assembly%20and%20Disease%20Analytics.pdf


http://schatzlab.cshl.edu/presentations/2014-02-19.Brown.Assembly%20and%20Disease%20Analytics.pdf

Assembly N50 = Chromosome N50
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Speculative extrapolation
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Summary:

Whole genome de novo
assembly



Extensive biological
iInformation

L ow ascertainment bias

Can use in combination with
all other enrichment methods



Not yet tractable for large
genomes

Still expensive for medium-
Sized genomes

Assembly and annotation still
very labor intensive



Now widely used to study
molecular evolution of
microbes

Targeted application to small
numbers of medium-sized
genomes



Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly
of large genomes using second-generation sequencing.
Genome Research 20, 1165-1173 (2010). http://
dx.doi.org/10.1101/gr.101360.109


http://dx.doi.org/10.1101/gr.101360.109

Whole genome
(reference mapping)




Mapping Is an alternative to
assembly

New data are mapped to an
existing reference sequence

Requires far less data than de
novo assembly



Map to reference
Consensus construction

Annotation



Reference
Sequence

Sample
Sample Reads —_— _)Sequence



Many mapping tools, eg
bowtie

Many tools for processing
mapped reads, eg samtools



Inexpensive

Preprocessing Is simpler than
for de novo assembly



Requires a reference
sequence from a very closely
related taxon

Can be biased by reference
(e.g., miss structural
differences)



Human and model system
resequencing



Consortium, T. 1. G. P. et al. A map of human genome
variation from population-scale sequencing. Nature 467,
1061-1073 (2010). http://dx.doi.org/10.1038/
nature09534


http://dx.doi.org/10.1038/nature09534

Transcriptomes




Sample preparation






Some options for preservation

Freeze tissue (-80°C or colder)

RNALater (Ambion), kept cold
Extract RNA in the field

Homogonize in Trizol, keep cold






MBNA Isolation - Lots of tissue

|Isolate Total RNA with Trizol
Digest DNA

|Isolate mMRNA



MRNA isolation - Small amount
of tissue

MRNA straight from tissue
(eg Dynabeads mRNA DIRECT Kit)


http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&showAddButton=true&productID=61011&_bcs_=H4sIAAAAAAAAAO1QXUvDMBT9NXlxdDQN6%2FbaWQuizGH1wScJ7W0bSJOS3HX033vjbMUh%2FgIh3NzP%0Ac889EWfx7uhsfarQr1iSrkpwo6rA%2F5HvEAcmMpYU9M7n81qZUaGzLZh1ZXtKeoVA38mTAUOms31I%0AzIiRNHW0ICZFNgxaVRKVNX7dYa9pC0tEePEO3QlCHG8D2Qbf%2BTbmNNSQs%2BUxv6Fs%2F3zIVvfe6k%2BM%0Aa47D19proiLbxVRWY2tmoq8lGVkrBxWG0jLARFH1NRM50cyVH7ScSpw0XZWG8OKLvFSm1fAII%2Bhb%0AidBaN1EHzTzARGUemKdPR3IbpREcRRcngBxkHzDCMSzZf58z97xMQ6jzJRFgZj02PxVZ5Guk9lf6%0ApbN%2B6ebSnL8dsv1dltPxqYOWif2%2FhL9I%2BAEJQfdQLgMAAA%3D%3D&returnURL=http%3A%2F%2Fproducts.invitrogen.com%3A80%2Fivgn%2Fen%2FUS%2Fadirect%2Finvitrogen%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1701%252Ff_177101*

RNA quality is (almost)
Everything!

Avoid contamination

Reduced sample size requirements
have improved this



RNA quality is (almost)
Everything!

Quantity matters - be cautious
working at the bottom range of
sample requirements



RNA quality is (almost)
Everything!

Amount of ribosomal RNA matters

There are tradeoffs between rRNA
fraction and yield. If material is
limiting, purify less and sequence
more



Transcriptome Assembly




Transcriptome assembly has
the same challenges as
genome assembly...

... and then some.



Transcript splicing

MRNA’s are spliced before leaving
the nucleus

pre-mRNA

— T 77— T ]
5 UTR Exon Ql Exon ly Exon 3" UTR
MRNA

en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg



http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg

Transcript splicing
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Assembly results...

Genome
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Transcript
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Splice variants

-Different splice variants for a given
gene can vary widely in abundance

-Deep sequencing captures some
“Intermediate splice variants”, molecules
INn the process of being spliced

-Sequencing and assembly errors can
be misinterpreted as splice variants

-Data may be insufficient to predict
splice variants



It gets worse...



Genomes have uniform depth
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Assemblers can make assumptions about
uniform distribution of sequencing effort
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But transcriptomes have non-
uniform depth

- Different expression across
genes

- Different splice variants
within genes



Expression differences mean:

- Can’t assume that the expected
frequency of sequences is uniform
across or even within genes

- Low copy number doesn’t
necessarily indicate an error

- High copy number doesn't
necessarily indicate a repeat

- Sequencing error is hard to
accommodate in transcriptomes



When assembling
transcriptomes, It Is essential
to use an assembler that can
explicitly accommodate splice
variants and expression



Agaima

Our automated transcriptome
workflow



Why automate?

So that results are
reproducible.



Why automate?

So that results can
be easily explored
and extended.



Why automate?

So that methods can
be compared In a
controlled setting.



Why automate?

To facilitate methods
development by enabling
people to focus on
particular steps without
reinventing everything.



Why reproducing studies Is
hard:

- Reconstituting the raw data can
take weeks

- Methods descriptions are often
Incomplete

- Manual steps are often
subjective

- Code is often not provided



The tool

https://bitbucket.org/caseywdunn/agalma

¥ Bitbucket Repositories ~+  Create

Q. owner/repository @ v

agalma
& caseywdunn ¥ Following &2 Share
Overview Source Commits Pull requests Issues 1 Downloads 3

Agalma is deveioped by the Dunn Lab at Brown University.

See TUTORIAL for an example of how to use Agalma with a sample dataset.

Overview of Agalma

Agaima s a set of analysis pipelines for transcriptome assembly (paired-end lllumina data) and
phylogenetic analysis. It can import gene predictions from other sources (eg, assembled non-
Ilumina transcriptomes or gene models from annotated genomes), enabling broadly-sampled
“phylogenomic® analyses.

Agalma provides a completely automated analysis workfiow that filters and assembles the data
under default parameters, and records rich diagnostics. The same goes for alignment,
translation, and phylogenetic analysis. You can then evaluate these diagnostics to spot problems
and examine the success of your analyses, the quality of the orignal data, and the
appropriateness of the default parameters. You can then rerun subsets of the pipelines with
optimized parameters as needed,

The workflow is highly optimized to reduce the RAM and computational requirements, as well as
the disk space used. It logs detalled stats about computer resource utilization to heip you
understand what type of computational resources you need to analyze your data and to further
optimize your resource utilization.

The main functionality of this workfiow is to:

« assess read quality with the FastQC package

« remove clusters In which one or both reads have lllumina adapters (resulting from small
inserts)

« remove custers where one or both reads s of low mean quality

» randomize the sequences In the same order in both pairs 1o make obtaining random
subsets easy

« assemble and annotate rRNA sequences based on a subassembly of the data

« remove clusters in which one or both reads map to rRNA sequences

&, Clone ~

& Fork >3 Compare Ty Pull request

£ 2

SSH~ git@bitbucket.org: coseywdunn/ago

Y W ¢ *

1 0 0 3

Branch Tags Forks Followers

Owner Casey Dunn
Access level Public
Typa Git
Last updated 2013-02-19
Created 2013-02-07
Size 1.9 MB (downikad)



https://bitbucket.org/caseywdunn/agalma

Example analyses

Five siphonophores

https://bitbucket.org/caseywdunn/
dunnhowisonzapata2013/

https://bitbucket.org/caseywdunn/
dunnhowisonzapata2013/downloads


https://bitbucket.org/caseywdunn/dunnhowisonzapata2013/
https://bitbucket.org/caseywdunn/dunnhowisonzapata2013/downloads

Phylogenomic analyses of deep gastropod
relationships reject Orthogastropoda

Felipe Zapata, Nerida G Wilson, Mark
Howison, Sonia CS Andrade, Katharina

M Jorger, Michael Schrodl, Freya E
Goetz, Gonzalo Giribet, Casey W Dunn

bioRyiv

THE PREPRINT SERVER FOR BIOLOGY

http://dx.doi.org/10.1101/007039



http://dx.doi.org/10.1101/007039

Includes a tree...
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Includes a repository of all agalma commands

https://bitbucket.org/caseywdunn/gastropoda/src

800 @caseywdunn / Gastropod: X B

&~ C' [ Atlassian, Inc. [US] https://bitbucket.org/caseywdunn/gastropoda/src x A=

Atlassan
U Bitbucket Features Pricing @~ English~ Signup Login

0 Source

I’ masterv ¥, ~ Gastropoda /

il agalma-analyses

data

phylogenetic-analyses

sra

(W)

README.md 3.8 KB 2014-07-11 remove tar ball and add text files and changes to README

OB v oM@

)

ThirdPartyData.csv 1001 B 2014-07-09 New table with third party data

Introduction

This repository contains the code that describes most analyses presented in:

Zapata F, Wilson NG, Howison M, Andrade SCS, Jérger KM, Schridl M, Goeltz FE, Giribet G, Dunn CW. (2014) Phylogenomics analyses
of deepd gastropod relationships reject Orthogastropoda. BioRxiv doi:10.1101/007039

Dependencies

These scripls require Agalma and ils dependencies. Agalma versions 0.3.4 and 0.3.5 were used to run the analyses.

Running the analyses

The analyses are broken into a series of scripts, which are available in the agal=ma-analyses/ and phylogenetic-analysesa/ directories. The script
master.sh within each of these directories indicates the order that all the other scripts should be run in. The phylogenetic-analyses/ directory




WGEL

For each transcriptome:

- Filter adapters/ low quality reads
- Assemble ribosomal RNA

- Remove all ribosomal RNA reads
- Assemble full dataset

- Put assemblies in database

Agalma can also:
- Import reads directly from SRA
- Process externally produced assemblies



WGEL

Across transcriptomes:
- [dentify homologs (all-by-all blastp, mcl)
- Build gene trees (raxml)

- [dentify orthologs (based on tree
topologies)

- Build preliminary species trees (raxml)



WGEL

- Built on our BiolLite framework
- (Relatively) easy to install

- Catalogs specimen data

- Records detalled diagnostics

- Detalled provenance

- Checkpoints (can be restarted)
- Modular

- Generates html reports bundled
with output files



Agalma Report

Distribution of library insert sizes

0 100 200 300 400 500
Insert Size (bp)



Agalma Report

remove _rrna runs

Assembles and identifies ribosomal RNA (rBNA) sequences, removes read pairs that map to these rRNA sequences, and
provides a variety of diagnostics about rRNA. A single exemplar sequence is presented for each type of rRNA that is
found, but rRNA read pairs are excluded by mapping to a large set of rRNA transcripts that are derived from multiple
assemblies over a range of data subset sizes.

Read pairs examined 49,584,637
Read pairs kept 49,389,302
Percent kept 99.6%

>large-nuclear-rRNA|ILocus_1000000.230_Transcript_1/1_Confidence_1.000_Length_3648|Run8|HW
I-ST625-73-COJUVACXX-7-AGALMA
TCTCCTTCGACTGATCTCAGTCAGTCGAAAAGTTTTTATTTTGACCTCAGATCAGACAAGACTACCCGCTGAATTTAAGC
ATATTAATAAGCGGAGGAAAAGAAACTAACAAGGATTCCCCTAGTAACGGCGAGTGAAGCGGGAACAGCTCAAACTTAAA
ATCTCCGTTGCTTGCAACGGCGAATTGTAGTCTCGAGAAGCGTTTTCAAGGCGAATGCGCAGTACTTAAGTTGCTTGGAA
CGGCACATCGTAGAGGGTGACAATCCCGTACGTGGTACTGTGCATCGTTCACGATGCGCTTTCTATGAGTCGGGTTGCTT
GGTAATGCAGCCCAAATTGGGAGGTAAACTCCTTCTAAAGCTAAATATTGGCACGAGACCGATAGCGAACAAGTACCGTG
AGGGAAAGATGAAAAGCACTTTGAAAAGAAAGTTAATAGTACGTGAAACCGTTAGGAGGGAAGCGCATGGAATTAGCAAT
GCACTGTCGAGATTCAGACGATCGGTGCTCAGTACGGGCGTCGTACGGATCCGAATGGACCGTTGGCATTCGTCACTTAG
TACTGGTTGTCGCATTTCCCGTCAGTGTGCGTCAACAGGTGTTGGAATCGGGTGATACGCCTCGCAAGAAGGTGGCTGGT
TTCGATCAGTGTTATAGCTTGCGATGTGCTAGCTCGGATCCGACAGAGGTGTCGCAGCACATGCCCTCACGGGCTGGCTT

CTGTTTCCTCAGTCTTGCGTGACCATAGTGGACTGCGTGCAGTGCGCTTGAACTTCGTCGGGCTGTCGGAGGCATGAATG
CACACTATCTCCTTACCTTCTTCCCCCTOATATCCTTTOATCCCACCCCTOTTOCTAACACCCACCAACCACTCTAACATC



Agalma Report

Distribution of sequencing effort across genes
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Agalma Report

Reduction in number of genes at each step of
matrix construction

100,000}

80,000

60,000

# of Genes

40,0001

20,000 |+

homologize multalign multalign multalign treeprune multalign multalign multalign
(write_fasta) (refine_clusters) (remove_frameshifts)cleanup_alignments) (parse_trees) (refine_clusters) (remove_frameshifts)cleanup_alignments)

Pipeline (Stage)



Agalma Report

Agalma elegans
Craseoa lathetica
Abylopsis tetragona
Nanomia bijuga
Physalia physalis
Hydra magnipapillata

Nematostella vectensis

Protein supermatrix

Genes




Agalma Report

And preliminary trees...

Craseo lathetica

Physalia physalis

Hydra magnipapillata

Nematostella vectensis

Agalma elegans

Nanomia bijuga

Abylopsis tetragona



Agalma Report

Resource utilization

Parallelism

Peak Memory (GB)

#
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Wall Time (HH:MM:SS)
Calls longer than 1% of total runtime
Stage / (Call Runtime User CPU% System CPU% Peak Memory
© sanitize.sanitize.filter_illumina 48:53 26% 72% 1.3 MB
remove_rrna.bowtie.bowtie2 27:56 1583% 14% 781.4 MB
© remove_rrnad.exclude_ids.exclude 42:01 15% 84% 96.8 MB
m assemble.quality_filter.filter_illumina 37:18 16% 83% 1.3 MB
m assemble.trinity.butterfly 12:42:27 750% 118% 26.3 GB
= postassemble.coverage.bowtie?2 1:16:11 1569% 10% 898.0 MB
= postassemble.nr_annotate.blastx 9:01:35 1569% 3% 222.7 MB

23



Downstream from Agalma

Think of Agalma as a tool for
generating alignments of
homologous genes. It Is up to you
to figure out the appropriate
phylogenetic analyses to resolve
the relationships between species.



Summary:

Transcriptomes




Can be readily applied across a
broad diversity of species

Very cost effective way to collect
protein coding regions

Very effective for gene discovery

Select genes after sequencing



Requires high quality RNA

Assembly can be tricky

Ascertainment bias - only
gives expressed genes



Phylogenetic analyses with
broad taxon sampling

Evolutionary development,
physiology, ecology studies



Dunn, C. W., Howison, M. & Zapata, F. Agalma: an
automated phylogenomics workflow. BMC
Bioinformatics 14, 330 (2013). http://dx.doi.org/
10.1186/1471-2105-14-330

Felipe Zapata, Nerida G Wilson, Mark Howison,
Sonia CS Andrade, Katharina M Jorger, Michael
Schrodl, Freya E Goetz, Gonzalo Giribet, Casey W
Dunn. Phylogenomic analyses of deep gastropod
relationships reject Orthogastropoda. Biorxiv. http://
dx.doi.org/10.1101/007039


http://dx.doi.org/10.1101/007039
http://dx.doi.org/10.1186/1471-2105-14-330




Digest genomic DNA with one
or more restriction enzymes

Size select restriction
fragments

Seqguence fragments



Consolidate redundant reads

ldentify homologous reads
across samples



Inexpensive

Sequence tags are broadly
sampled across the genome

Relatively simple
preprocessing



Can only compare data
across closely related taxa

Little control over which
particular regions are
seguenced

Size selection can be tricky



Population genetics within
specles



Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H.
S. & Hoekstra, H. E. Double Digest RADseq: An
Inexpensive Method for De Novo SNP Discovery
and Genotyping in Model and Non-Model Species.
PLoS ONE 7, e37135 (2012). http://dx.doi.org/
10.1371/journal.pone.0037135


http://dx.doi.org/10.1371/journal.pone.0037135

Targeted
enrichment



Select genes

Design capture probes that
nyoridize to genes

Use probes to pull out selectea
genes from fragmented DNA



(Select genes)

Assemble reads Into gene
sequences

Annotate selected genes



Inexpensive

Strong control over which regions are
seqguenced

Greatly simplified assembly and
annotation

Works great on poorly preserved
specimens



Need to know what genes to
sequence before you start

Ascertainment bilases

Difficult to integrate data across
studies with different genes

Need to optimize for different
clades



Phylogenetic analyses with
broad taxon sampling



Lemmon, A. R., Emme, S. A. & Lemmon, E. M.
Anchored Hybrid Enrichment for Massively High-
Throughput Phylogenomics. Syst. Biol. 61, 727-744
(2012). http://dx.doi.org/110.1093/sysbio/sys049


http://dx.doi.org/10.1093/sysbio/sys049

Directed PCR




Select genes

Design primer pairs that
nyoridize to genes

Amplify and sequence genes



(Select genes)

Assemble reads Into gene
sequences



Easy to integrate with existing
data

Strong control over which
regions are sequenced

Greatly simplified assembly
and annotation



Need to know what genes to
sequence before you start

Very labor intensive for more
than a few genes

Need to optimize for different
clades



“Phylodiversity” studies, i.e.
small number of genes from
many taxa



Other
enrichment
{ools...




SNP chips




infinium HD Assay
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The Infinium HD Assay protocol features single-tube sample propa-

"Iumina mU|ti'sample al‘l’ay formats ration and whole-genome amplification without PCR or ligatien

steps, significantly reducing labor and sample-handling errors.

http://www.illumina.com/technology/beadarray-technology/infinium-hd-assay.ilmn



1 8 006 j"' \ 23andMe - Genetic Testin % "\, \[ ®

& — C & nhttps://www.23andme.com Gl P

The largest DNA ancestry service in the world @ A= o

23andMe welcome ancestry howitworks buy  (search help

23andMe provides ancestry-related genetic reports and uninterpreted raw genetic data. We no longer offer our health-

related genetic reports. If you are a current customer please go to the health page for more information. Close alert.

Find out what
your DNA says
about you

and your family.

« Learn what percent of your DNA is from populations
around the world

o Contact your DNA relatives across continents or
across the street

» Build your family tree and enhance your experience
with relatives

$99




20.5% :38.6" Neanderthal DNA lives on in us.

East Asian

24.7%

European

Build your family tree and
enhance your experience.

2nd Cousin

3.125% shared

https://www.23andme.com/ancestry/



Very inexpensive

Simple data preprocessing



Extremely expensive Initial
Investment

Only works for very closely
related taxa



Human and model systems

(an Inexpensive alternative to
reference mapping)






Part Il:
Using trees to
study genome
function




What does “phylogenomics”

mean??

1. The study of genome evolution in a
phylogenetic context

2. The inference of species
phylogenies with genome data

3. The inference of species
phylogenies with data from lots of

genes



What does “phylogenomics”

mean??

1. The study of genome evolution in a
phylogenetic context

2. The inference of species
phylogenies with genome data

3. The inference of species

phylogenies with data from lots of
genes



How do we make links
between genes and
phenotypes when we can't
do genetics”?






Phylogenetic studies now
generate:

- Species trees

- Extensive gene sequence data

- Well sampled gene trees
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http://rna.ucsc.edu/rnacenter/ribosome_images.html

But we don’t know which
genes are relevant to
which phenotypes



A small glimpse of a much greater schism

enomes Evolutionary Morphology,
unctional function,

%réce Archive enomics eCOIOgy,
Iih Sequence Read Archive development

>FZTBY7Y0410Z6U rank=0418088 x=3584.5 y=3492.0 length=457
CAAGGTCTTGAACCAACAGTTGGATACAATTCAGAATGACGGAATGAAAGAAATCCATTT
CACTGGTCATGTTGACTTTTTCCACGTGTTCTGGATCGATCTTCTCCTTTAACTTCTCCT
GAAGCTGTTGTGTTGTCTCCTGGCAGTATTCGCATGTCGTCAGTACACAACATATCAACC
TCCGTTCGTCTTCGTTGAACTTCACGTCGTTGTCCTTCAAGATGCTCGAAATACCGCCCG
TCGAAGAAACCTTGGGTAAGGCTTCCCAGCAGAAGGCGATTAGTGTATTCCACCAGGTAT
CTACTTGAACGTATCTGTAGAAAGGGAAGAAGCAGAGGTTGCCACTGCTCAACTGAACGC
ATTGCACCATACTCTTCTTGAAGAAGACAAACAACTCGCCAGCACTCGGGAGAACTGTCC
CTTCGGAATCCTCGCCGAGTTTTGGAACACCTTGTTC

>FZTBY7Y04IQ5F0 rank=0418094 x=3472.5 y=2494.5 length=288
AATGAAATATGCTGAGCAGTTCAAGTTTCTATACTCACGAAGAAACAACATTGTAGATGG
TTCATACGAACCCAACAATGAAGAGGCGGTTTGGGTTGATCCTTTAGAAGAATTGGTTGA
ACAGTTGAATAAGGGTGGTGAAGAAAAGCTGAATCTGAGAAAACTGAAGAAGAGAAATTG
GCTGGATGGTGTGAAAACTTTATCATTTGGTGAAGAACACAAAAGGTATTCCTGAATTTT
GGCTCACTGCAATGAAGAACGTTGAAATACTTGAAGATATGATTCAGG
>FZTBY7Y04IQ7J9 rank=0418096 x=3473.0 y=1143.0 length=421
AGGCCGGGGCCTTTCGATTAAGATATCTAAAAGAGTTTGGTTCTCCACGGAGCTAAGGCT
AACAAATCTACGTAAATCTTGCATTTGTTGCAACCTTCTCTATTAAAAATGTCTGACACA
TCTGTATCCGAACTTGCCTGTGTATACAGTGCCCTTATTTTATACGATGATGATATCGAT
ATCACAGGAGAAAAAAATGGCTAAAATCATCGCTGCTGCCAACGTCAACGTAGAAACCTT
CTGGCCTGGACTCTTCGCCAAGGCTCTCCAAGGACGTAACATCGGTGACCTTATCTGCAA
TGTAGGATCCTCCGCAGCCGCTGCTCCAGCCGCCGCTGCTGCTGCTGGTGATGCTCCAGC
TGCTGCTGAAGAGAAGAAGAAGAAAAGAAGGTCAGTTCAGATGAGGATCAGATGATGATA




Measuring expression



(S Haddock)



Which genes are
differentially expressed
pbetween bodies In a
siphonophore colony?
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Gene Count

—_—— Gene001 4

- Gene002 6

— —> Gene003 22

Gene004 1

Gene005 2



Nanomia
bijuga




(MBARI)









Paired samples, 3 specimens
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Replicated design

Tissue A Tissue B

Specimen 1 X Reads X Reads

Specimen 2 X Reads X Reads

Specimen 3 X Reads X Reads




Helicos SOLID lllumina




Genes with siagnificant DE
e Genes with
complete
3’ end

g

Hellcos
DGE

EdgeR, Bonferroni corrected p < 0.05
(http://dx.doi.org/10.1371/journal.pone.0022953)


http://dx.doi.org/10.1371/journal.pone.0022953

Where to next?

Characterization of genes with
significant differential
expression



Red genes have significant differential expression
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Red genes have significant differential expression
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Uh oh.
“Data deluge”

“"Firehose of data”

“I'm drowning in data.”

“"Data overload”



The problem isn't too
much data.

We need more data that
tell us about our data



What other data do we
need?

Comparative data - we
need to be looking at a
lot more than one
species at a time.



Current approach:
Which genes have expression

correlated with my phenotype of
iInterest?

New approach:

Which genes have evolutionary
changes In expression that are

coincident with changes in my

phenotype of interest”?



les
Analyze expression data on phylogenie

Expression data
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(S Haddock)

Nanomia Frillagalma Bargmannia
bijuga vityazi elongata



Overview

Gene tree
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anomia @jsogroup3024
Nanomia@isogroup2193
@ Nanomia@Contig175
* ~_ Nanomia@Contig1558
Naribmia @isogroup5893
Nanomia @isogroup637
Nanomia

Nanomia@Contig430
) ontig182
Nanomia@isogroup885

Frillagalma@isogroup4792

Nanomia@isogroup6331

Nanomia@isogroup1843
Nanomia@Contig486

Frillagalma@isogroup5835 ] ]
Nanomia@Contig3028

Frillagalma@is group 1141

Erilfagalma@ijsogroup352

Frillagalma @isogroup227
irlllagalma @isogroup389

Feeding

Nanomia@isogroup 1200
Nanomia@Contig4604 ]
Nanomia@Contig3446
lagalma @isogroup4914
Nanomia@isogroup179

Nanomia@isogroup9184 ‘ LogFC = 9.94

anomia@isogroup2788
o Nanom‘clza@fjsogroup5604 ‘ Log FC =-9.94
Nanorfia @isogroup2191
Frillagalma@isogroup3841
Nanomia @isogroup3943
anomia@isogroup8633
Nanomia @isogroup666
Ima@isogroup137

Size indicates magnitude

J Nanomia @isogroup6370 Log FC ) the Iog base 2 Of
Frillagalma@isogroup 1492 expreSSIOn |n SWlmmlng/
hemicentin feeding bodies




Find gene families that always have differential
expression in the same direction

— Hydra magnipapillata@ 13847

Agalma elegans @28668
@ Nanomia@Contig1161
© Frillagalma@isogroup 1429
@ Bargmannia@GJQA7YWO01AK9U6

Hydra magnipapillata@9682

Hydra magnipapillata @6087
4L—‘— Hydra magnipapillata@ 16291
Hydra magnipapillata@ 10239

Nematostella vectensis @ 146588
Nematostella vectensis @ 140666
Nematostella vectensis @ 145556
N

ematostella vectensis @ 153458 @
Nematostella vectensis @ 149850
Nematostella vectensis @ 131852
Nanomia@Contigs86

4‘:’ Frillagalma @isogroup1662
Bargmannia@GJVT2M301BI3KC
éig Hydra magnipapillata@ 15669 . LogFC =8.59
Hydra magnipapillata@ 13846 - _
— Hydra magnipapillata@ 16236 u n C . Log FC 8.59

Clytia hemisphaerica@ 164786

Agalma elegans@39712

Agalma elegans @28268

T Clytia hemisphaerica@ 164641
Hydractinia echinata@20091
— Hydra magnipapillata@ 15201
Hydra magnipapillata@15815

Clytia hemisphaerica@ 162234 F e e d i n g

, o) Bargmannia @isogroup5285

' Clytia hemisphaerica@ 166340
* , @ Nanomia@isogroup8221

' Agalma elegans @38094
;© Frillagalma@isogroup544
. Nanomia@jsogroup6892

Bargmannia@isogroup3316
? Hydra magnipapillata@ 13440
Agalma elegans @38008
—0 L @ @ ‘ Bargmannia@isogroup3582

Clytia hemisphaerica@ 162088

Clytia hemisphaerica@165153
J o] Bargmannia@isogroup147
o] Nanomia@igoggoup 1355
) Bargmannia@isogroup4410 W LogFC = 15.56
) Bargmannia@isogroup5040 . -
® Frillagalma@isogroup1223 C al p O nin ‘ LogFC = -15.56



This approach can be used to

- |dentify genes that have shifts In
expression associated with shifts in
other phenotypes of interest

- Genes that have evolutionary
covariance In expression



Collaborators
. g Joe Felsenstein (UW)
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Why use phylogenies to
analyze expression across
species?

Trait 2

n=15

Trait 1



Why use phylogenies to
analyze data across species?

LU L L LU L
@ O

\_J

Trait 2

n=2
Trait 1




Vol. 125, No. 1 The American Naturalist January 1985

PHYLOGENIES AND THE COMPARATIVE METHOD

JOSEPH FELSENSTEIN
Department of Genetics SK-50, University of Washington, Seattle, Washington 98195

Submitted November 30, 1983; Accepted May 23, 1984

13 14 _ _
Observations across species

Viy V, are not independent, but
contrasts across internal
nodes are



Integrative and Comparative Biology

Integrative and Comparative Biology, pp. 1-10
doi:10.1093/icb/ict068 Society for Integrative and Comparative Biology

Phylogenetic Analysis of Gene Expression

Casey W. Dunn,"* Xi Luo® and Zhijin Wu'

*Department of Ecology and Evolutionary Biology, Brown University, Providence, RI, USA; TDepartment of Biostatistics
and Center for Statistical Sciences, Brown University, Providence, RI 02903, USA
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http://dx.doi.org/10.1093/icb/ict068

A typical project design:

Species > A A A B B C C C D D
Individual > 1 2 3 5 6 7 8 9 10 11
Treatment 1 ... .. ... ..
Treatment 2 ... .. ... ..

Each grey box is a sample

Dunn et al 2013 (http://dx.doi.org/10.1093/icb/ict068)


http://dx.doi.org/10.1093/icb/ict068

Three major challenges:

1. Measuring expression so that it
can be compared across species.

2. Interpreting covariance when
the number of genes greatly
exceeds the number of species.

3. Accommodating incongruence
between gene and species trees.



Three major challenges:

2. Interpreting covariance when
the number of genes greatly
exceeds the number of species.



Il. Interpreting covariance




1. Interpreting covariance

We want to understand the
relationship of expression across
genes and relative to other
phenotypes



1. Interpreting covariance

In most comparative analyses:
n>mp

n humber of observations
(eg contrasts)
p humber of variables



1. Interpreting covariance

In comparative analyses of
gene expression:

n <<p

n number of observations
(eg contrasts)
p number of variables



l. Interpreting covariance

When 1 > D
P P
P —> = 4
n
True Contrasts Observed

Covariance Covariance



Il. Interpreting covariance

When N < P
P P
P
)%, o
True Contrasts Observed

Covariance Covariance



1. Interpreting covariance

The covariance matrix is well
behaved whenn > p

It Is difficult to use and potentially
misleading when N << p



1. Interpreting covariance

Challenges of working with
matrices when 1 << P :

- Matrices are singular (hon-
invertible)

- Many spurious non-zero
covariances



If you are looking at many
variables in a small number of
observations, you will find
many spurious correlations
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l. Interpreting covariance

o Genes

Covarlance matrix Scale

SauaK)



l. Interpreting covariance

Simulate evolution of these 100
genes on a tree of 8 species

— Species_A




l. Interpreting covariance

p=100 n=r,




l. Interpreting covariance
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l. Interpreting covariance

1.0

|
I0.0

-1.0

“True” Regularization
(Luo, 2012)



l. Interpreting covariance

“True” Regularizai
(Bickel & Levina 2008)



1. Interpreting covariance

Take home:

There Is no getting around

missing information when n << p
but false positives can be
mitigated through regularization






Visualization



An interactive tree

Use It:
http://dunnlab.org/phylotree

Watch a demo:
https://vimeo.com/67665449

Play with the code:
https://github.com/vhsiao/phylotree


http://dunnlab.org/phylotree
https://github.com/vhsiao/phylotree
http://dunnlab.org/phylotree
http://dunnlab.org/phylotree
https://vimeo.com/67665449
http://dunnlab.org/phylotree

We make cartoons
http://nytimes.com/creaturecast

6: CreatureCast Video Cha

www.nytimes.com/video

TIMESVIDEO

CreatureCast: Suddenly Visible CreatureCast: Cuttlefish CreatureCast: A Tale of Two CreatureCast: Stealing Poison
Camouflage Urchins Capsules

CreatureCast: Swimming With CreatureCast: Royalty Sapped Bunnies, Dragons and the Sex in Spoonworms

From Snails ‘Normal' World



http://nytimes.com/creaturecast

Building skills



"Routine” phylogenetic analyses
now require many skills that
biologists are rarely trained In.



High throughput sample
preparation

Programming
High performance computing

Stats beyond Sokal and Rohlf






Computation

To use the command line.
Efficient text handling.

At least one programming language.

How to work on remote computers.



- practical computing
for biologists

Steven H. D. Haddock
The Monterey Bay Aquarium Research Institute,

and University of California, Santa Cruz '
Casey W. Dunn “‘

Department of Ecology and Evolutionary Biology,
Brown University

Sinauer
Associates, Inc.



goals

To show you how to use general
tools to address the day-to-day
computational challenges faced by
biologists.






Statistics

| posted my own handout/ cheat
sheet:

https://bitbucket.org/caseywadunn/
statistics/


https://bitbucket.org/caseywdunn/statistics/

A little bit of linear algebra and
graph theory will take you far in
phylogenetics



Managing your
analyses



Organization is part of the
analyses, rather than
something that comes after



The data analysis
ecosystem in my lab

- Central cluster
- Google docs

- git



Analyses and storage on

cluster
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t the fast version control system

5‘!%2&?5% i?z'bi!s‘?vhh&!éﬁfﬁz‘iﬁn‘!:t:g‘fﬁ“
gitis a:
- Distributed software revision
control system

- Allows you to organize all lab
software in a single central
repository

- Can write and use software in
the repository on any computer

i S



Documentation

Data and analyses are a liabllity rather
than an asset if they aren’t well
documented

Documentation should be realtime, not
something that is done after analyses

Good documentation is a powerful
teaching and learning tool



ocumentation on

oogle Docs
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Or... literate code that
serves as analysis tool anad
documentation In one.

See:

https://bitbucket.org/caseywdunn/
phylogeneticbiology/src/master/
analyses/good_programming


https://bitbucket.org/caseywdunn/phylogeneticbiology/src/master/analyses/good_programming




