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1. The study of genome evolution in a 
phylogenetic context

What does “phylogenomics” 
mean?

2. The inference of species 
phylogenies with genome data

3. The inference of species 
phylogenies with data from lots of 
genes
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So you want to study 
molecular evolution in 
organism X…

1. Design experiment

2. Collect raw data

3. Analysis - Preprocess data

4. Analysis - Molecular evolution

5. Interpret results



In contrast to most other talks, 
I’m going to focus on these 
first three steps

1. Design experiment

2. Collect raw data

3. Analysis - Preprocess data

4. Analysis - Molecular evolution

5. Interpret results



As sequencing methods 
become more sophisticated, 
preprocessing data becomes a 
bigger and bigger part of 
molecular evolution projects



Preprocessing includes:

-Filtering

-Data wrangling (eg formatting)

-Assembly

-Mapping

-Annotation

-Homology evaluation



Understanding sequencing and 
preprocessing is essential to:

- Implement empirical projects

-Understand errors and 

ascertainment bias in data

-Design methods that address 

contemporary challenges



Part I: 
Collecting and 
preprocessing 
sequence data
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DNA sequencing is 

getting cheaper



http://en.wikipedia.org/wiki/Hype_cycle#mediaviewer/File:Gartner_Hype_Cycle.svg

The Gartner Hype Cycle*

* Not really a cycle



Will cheap sequence data 
allow us to answer all our 
questions?

Of course not.



Should we approach 
problems with more data or 
improved analysis methods?

This is a false dichotomy.

We need both!



Are other types of data now 
obsolete?

No!
We have entirely new 
opportunities for 
integrating genomic, 
morphological, and 
functional perspectives



- Many hard problems will require lots 
of data

Why collect data from lots of genes?

- These data are useful for things 
besides building trees
- It can be much cheaper to collect a 
lot of data than a little bit of data

- Lots of data makes some aspects of 
inference easier

- Gives broad perspective



Design 
decisions



There aren’t just more 
sequences in each molecular 
evolution analysis... 



There are more ways to collect 
and analyze molecular 
evolution data.



Which approach is right for 
you?



Framing questions:
What do you want to know?

What do you already know?

What material will you have 
available (DNA, RNA, or 
both)?



Central technical 
question:
Will you enrich your sample 
for particular genome regions 
prior to sequencing?



Enrichment reduces the 
amount of sequence data you 
need to collect.



It allows you to sequence 
homologous genome regions 
across multiple individuals 
and species.



Enrichment spectrum

Increasing enrichment

Whole genome

“Whole” transcriptome

Directed PCR
Targeted 
enrichment

RAD tag



Increasing enrichment

“Whole” transcriptome

Directed PCR
Targeted 
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Whole genome



Whole genome

- In a phylogenetic context, 
currently only cost effective 
for small genomes.

- Often need transcriptome 
data to annotate genes.

- No enrichment.



Increasing enrichment

Whole genome
Directed PCR
Targeted 
enrichment

RAD tag
“Whole” transcriptome



Whole transcriptome
- Enriched for expressed 
protein coding genes

- There is no One True 
Transcriptome



Increasing enrichment

Whole genome

“Whole” transcriptome

Directed PCR

RAD tag

Targeted 
enrichment



Targeted enrichment
- Use hybridization to enrich 
particular regions

- Need to synthesize probes 
specific to each region

- Works well even on 
degraded DNA



Increasing enrichment

Whole genome

“Whole” transcriptome

Directed PCR
Targeted 
enrichment

RAD tag



RAD tag
- Enriched for randomly 
distributed, but consistent, 
genome regions

- No need for specific probes



Increasing enrichment

Whole genome

“Whole” transcriptome

Targeted 
enrichment

RAD tag

Directed PCR



Directed PCR
- Simple and cheap for a small 
number of genes
- Doesn’t scale so well to 
many genes



Increasing enrichment

Whole genome

“Whole” transcriptome

Directed PCR
Targeted 
enrichment

RAD tag

As prices fall, the best approach 
tends to move to the left.



Back to the big 
question…



Is directed PCR, targeted 
enrichment, 
transcriptome, or 
genome sequencing 
better for phylogenetics?



Nonsensical question!
We used to have a small number of 
tools for enrichment and 
sequencing.

We used them 
for everything.

(Smithsonian)



Nonsensical question!
Now we have an amazing set of 
specialized tools.

Can fit the tool 
to the project.



Many features of enrichment 
strategies are an advantage 
for some projects and a 
disadvantage for other 
projects.

eg, sometimes ascertainment 
bias is good and sometimes it 
is bad



The major conceptual difference 
between these methods is 
whether genes are selected 
before or after sequencing



Increasing enrichment

Whole genome

“Whole” transcriptome
RAD tag

Select genes before sequencing
Directed PCR
Targeted 
enrichment



Increasing enrichment

Directed PCR
Targeted 
enrichment

RAD tag

Select genes after sequencing

Whole genome

“Whole” transcriptome



Select genes

Amplify and 
sequence 

selected genes

Assemble matrix 
from all 

sequenced genes

Phylogenetic 
inference

Sequence at random

Identify homologous 
sequences and 

evaluate paralogy

Select genes
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Phylogenetic 
inference
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Selecting after sequencing is a 
pain if you already knew what 
you wanted before you 
started…

But a huge advantage if you 
don’t know ahead of time.



Identifying and 
selecting 
homologs



Species A Species B Species C

Gene

Species



Species A Species B Species C

Gene divergence 
due to duplication 



Available Data

Clearest 

Homology

Clearest 

Orthology Most 

Informative



Phylogenetic tools build trees 
from homologous characters

Most phylogenetic tools 
assume character homology, 
they can’t evaluate homology

We need to make a first pass 
with phenetic tools



Some tools evaluate both 
homology and orthology with 
phenetic methods

Use phenetic tools to add new 
sequences into an existing matrix of 
pre-selected orthologs

HamStR 

dx.doi.org/10.1186/1471-2148-9-157



Use phenetic tools to identify 
orthologs de novo

Nice review by Chen et al 2007

dx.doi.org/10.1371/journal.pone.0000383

Some tools evaluate both 
homology and orthology with 
phenetic methods



Chen et al 2010 (dx.doi.org/10.1371/journal.pone.0000383)

multiple species. Analysis of independently assigned EC number
annotations suggests a high degree of reliability [18], and orth-
ology predictions for 55 genomes are available at OrthoMCL-DB
[20].

Despite the many ortholog identification methods now avail-
able, no comprehensive statistical comparison has yet been
reported, in part because the lack of a genomic-scale error-free
‘gold standard’ dataset makes it difficult to analyze performance.
Functional genomics data are often used as a surrogate for true
orthology, both for ortholog assignment (i.e. functional orthologs)
[21] and performance assessment [18], and have been used to
benchmark a small selection of orthology detection methods, and
transfer of functional annotations [22]. Such data are likely to
result in many errors, however, especially when applied across
large evolutionary distances [4].

Even in the absence of a reliable gold-standard, the comparison
of results from alternative methodologies contains useful in-

formation, as agreement enhances confidence (provided that the
methods employed are independent), and disagreement indicates
possible errors (either false positives or false negatives). Latent
Class Analysis (LCA) is a statistical technique that can exploit this
information, and has been widely applied to multivariate categorical
data in research of medical diagnostics, marketing, sociology, etc
[23,24]. For example, when no single, reliable diagnostic test is
available for determining the status (latent class) of individuals with
respect to a certain disease, LCA can be used to estimate the
accuracy (sensitivity and specificity) of multiple diagnostics.

We have applied LCA to the evaluation and optimization of
a comprehensive set of orthology detection methods, providing
a guide for selecting methods and appropriate parameters. This
study also provides an analysis of similarities and statistical
dependence between these methodologies. Two widely used
ortholog grouping methods – the manually curated KOG
database and the automated OrthoMCL algorithm – are further
compared with respect to the consistency of clustering, protein
function, and protein domain architecture. To illustrate the
relationships between orthology and homology detection methods,
some other methods BLASTP [25], SBH (Single-way or One-way
Best Hit) and TribeMCL [26] were also included in the analysis.

RESULTS
Agreement and disagreement between orthology

detection methods: input for Latent Class Analysis
A direct comparison of ortholog prediction methods requires
a unified dataset, which is difficult to generate due to differences in
the data types employed (see Table 1), and differences in the data
sources used by published analyses (see Methods). Because KOG
groups depend on manual curation, and are therefore not easily
updated or recompiled, BLASTP, SBH, RBH, RSD, Inparanoid,
OrthoMCL, and TribeMCL analyses were based on the KOG
sequence dataset. RIO and Orthostrapper make predictions based
on Pfam domains rather than full-length protein sequences; hence
proteins lacking Pfam domains were excluded. After mapping
Pfam domains to the KOG sequence set, the net result was

Figure 1. OrthoMCL graph construction between two species,
including the establishment of co-ortholog relationships. Solid lines
connecting A1 and B1 represent putative ortholog relationships
identified by the ‘reciprocal best hit’ (RBH) rule. Dotted lines (e.g. those
connecting A1 with A2 and A3, or B1 with B2) represent putative in-
paralog relationships within each species, identified using the ‘re-
ciprocal better hit’ rule. Putative co-ortholog relationships, indicated by
dashed gray lines, connect in-paralogs across species boundaries (e.g.
A3 and B2).
doi:10.1371/journal.pone.0000383.g001

Table 1. Various orthology/homology detection methods under study
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .

Methods Strategy a Apply to Proteins
Grouping
Capability Parameters Analyzed b % Positive Protein Pairs

Total c
Sampling
Average d

RIO Phylogeny Pfam domains NO Orthology bootstrap cutoff 1.9 17.9

Orthostrapper Phylogeny Pfam domains NO Orthology bootstrap cutoff 5.7 39.9

RSD Distance YES NO BLASTP E-value cutoff, Divergence cutoff 2.8 28.8

RBH BLASTP YES NO BLASTP E-value cutoff 5.2 37.7

Inparanoid BLASTP YES YES (2 species) BLASTP E-value cutoff 9.0 43.6

OrthoMCL BLASTP YES YES BLASTP E-value cutoff, MCL inflation index 11.8 52.8

KOG BLASTP YES YES N/A 23.6 66.2

SBH Homology YES NO BLASTP E-value cutoff 11.8 56.6

BLASTP Homology YES NO BLASTP E-value cutoff 41.5 72.1

TribeMCL Homology YES YES BLASTP E-value cutoff, MCL inflation index 47.2 74.7

aAlternative orthology detection strategies (including phylogeny, distance or BLASTP-based), or homology detection methods.
bParameters analyzed using the LCA benchmarking framework to assess their effect on orthology detection performance (Figure 4).
cThe fraction of positively predicted protein pairs (using default parameter settings) within the entire sampling dataset of 567,255 cross-species homologous protein
pairs (defined by Pfam domains).

dThe average fraction of positively predicted protein pairs (using default parameter settings) from 100 sampling replicates (of the average total of 1590.15 pairs).
doi:10.1371/journal.pone.0000383.t001..
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Some tools evaluate homology 
with phenetic methods and 
orthology with phylogenetic 
methods



Species A Species B Species C



This is our approach...



Put all sequences for all taxa in 
a study into a hat

Make all pairwise sequence 
comparisons

Construct a graph where 
nodes are sequences and 
edges indicate similarity



Nodes are sequences, thickness of edges indicate similarity



Nodes are sequences, thickness of edges indicate similarity



Gene5

Gene8

Gene9

Gene3

Gene1

Gene4

Gene2

Gene6

Gene7

Nodes are sequences, thickness of edges indicate similarity



“The paralogy problem”
But paralogs aren’t inherently 
a problem

The problem is misascribing 
paralogs as orthologs



Species A Species B Species C

Gene divergence 
due to duplication 



Species A Species B Species C

Gene divergence 
due to duplication 
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Once we have subtrees of 
orthologs...

Align each ortholog

Build trees



77 taxa, 150 Genes, >20k aa

GenesTaxa

White cells indicates sampled gene
50.9% gene sampling

Dunn et al., 2008

doi:10.1038/nature06614



https://bitbucket.org/caseywdunn/agalma
Can do this with:

https://bitbucket.org/caseywdunn/agalma


Homology evaluation is 
poised to undergo a radical 
transition in the next few 
years…



Rather than:

1) Use phonetic tools to 

identify homologous 
sequences


2) Use phylogenetic tools to 
identify orthologs


3) Use phylogenetic tools to 
infer species relationships



We will:

1) Use phenetic tools to 

identify homologous 
sequences


2) Use phylogenetic tools to 
simultaneously infer gene 
trees and species trees by 
modeling gene gain/ loss





A closer look at 
each enrichment 
strategy



Whole genome
(de novo assembly)



Short read 

sequencing



Sample preparation



Library preparation usually 
includes:

Fragmentation

Size selection

Adapter integration

Amplification



Why fragment?
1. Most sequencers require 
the input material to have a 
particular size range

2. To make sequencing 
coverage more uniform



Starting 

material Fragment

Prepare library, 

sequence

Fragments

Reads



Library preparation options:
Get a library preparation kit 
from the sequencer vender

Get a third party library 
preparation kit

Make the library from scratch



The most common library 
preparation problems:

Poor input material

Over-amplification

Poor size selection



Sequencing



For many studies, sample 
prep is already more 
expensive than sequencing.

We are approaching a point 
where sequencing costs are 
negligible.



Data are usually delivered 
in fastq format



fastq example:
@HWI-ST625:51:C02UNACXX:7:1101:1179:1962 1:N:0:TTAGGC!
CTAGNTGTTGAAGAGAAGGTTCAAGAACCAAAAGAAAGCTCACAACAACATATGGT!
+!
=AAA#DFDDDHHFDGHEHIAFHHIIIIGICDGAGDHGGIHG@A@BFIHIIIGC@@8!
!
@HWI-ST625:51:C02UNACXX:7:1101:1242:1983 1:N:0:TTAGGC!
ATAATTTCAATGACTGGAGTAGTGAAAATGAACATAGATATGAGAATAACCGTAGA!
+!
ACCCFFFFFGHHHHJJJIJEHIFHIJJJJIJJJJIIJIJJIIJJJJJJJJIIJJJJ!



Data Preprocessing:
Assembly

Annotation



Assembly



Assembly undoes 
fragmentation (and 
reduces redundancy).



Starting 

material Fragment

Prepare library, 

sequence

Assembly
Final 

product



Overlap assemblers that work fine 
on large Sanger datasets don’t 
scale to these very large data sets

The number of pairwise 
comparisons that are needed to 
detect overlap become intractable



de Bruijn graph assemblers have 
been developed to meet these 
challenges

Better defined memory footprint

Simpler comparisons between 
sequences



What is a graph?

Nodes

Edges



What is a graph?

Nodes

Edges



The first step in de Bruijn graph 
assembly is breaking each read 
down into all sequences of k length

actgtcat

actg!
 ctgt!
  tgtc!
   gtca!
    tcat



There are 4k possible k-mers

The k-mers are loaded into a hash 
table:

actg 1!
ctgt 1!
tgtc 1!
gtca 1!
tcat 1

In practice, k is often in the 25-70 range



A de Bruijn graph is constructed from 
the hash table

Each node corresponds to a k-mer 
sequence from the hash table

An edge unites each node that 
extends another node by one base 
pair



separate paths. Short repeats of this type can be resolved, but they
require additional processing and therefore additional time.

Another potential drawback of the de Bruijn approach is that
the de Bruijn graph can require an enormous amount of computer
space (random access memory, or RAM). Unlike conventional
overlap computations, which can be easily partitioned into mul-
tiple jobs with distinct batches of reads, the construction and
analysis of a de Bruijn graph is not easily parallelized. As a result, de
Bruijn assemblers such as Velvet and ALLPATHS, which have been
used successfully on bacterial genomes, do not scale to large ge-
nomes. For a human-sized genome, these programs would require
several terabytes of RAM to store their de Bruijn graphs,which is far
more memory than is available on most computers.

To date, only two de Bruijn graph assemblers have been shown
to have the ability to assemble a mammalian-sized genome. ABySS
(Simpson et al. 2009) assembled a human genome in 87 h on
a cluster of 21 eight-core machines each with 16 GB of RAM (168
cores, 336 GB of RAM total). SOAPdenovo assembled a human ge-
nome in 40 h using a single computer with 32 cores and 512 GB of
RAM (Li et al. 2010). Although these types of computing resources
are not widely available, they are within reach for large-scale sci-
entific centers.

In theory, the size of the de Bruijn graph depends only on the
size of the genome, including polymorphic alleles, and should be
independent of the number of reads. However, because sequencing
errors create their own graph nodes, increasing the number of reads
inevitably increases the size of the de Bruijn graph. In the de novo
assembly of human from short reads, SOAPdenovo reduced the
number of 25-mers from 14.6 billion to 5.0 billion by correcting
errors before constructing the de Bruijn graph (Li et al. 2010). Its
error correction method first counts the number of occurrences of
all k-mers in the reads and replaces any k-mers occurring less than
three times with the highest frequency alternative k-mer.

Choice of assembler and
sequencing strategy
Only de Bruijn graph assemblers have
demonstrated the ability to successfully
assemble very short reads (<50 bp). For
longer reads (>100 bp), overlap graph as-
semblers have been quite successful and
have a much better track record overall. A
de Bruijn graph assembler should func-
tion with longer reads as well, but a large
difference between the read length and
the k-mer length will result in many more
branching nodes than in the simplified
overlap graph. The precise conditions un-
der which one assembly method is supe-
rior to the other remain an open question,
and the answer may ultimately depend
on the specific assembler and genome
characteristics.

As Figure 3 illustrates, there is a di-
rect and dramatic tradeoff among read
length, coverage, and expected contig
length in a genome assembly. The figure
shows the theoretical expected contigs
length, based on the Lander-Waterman
model (Lander and Waterman 1988), in
an assembly where all overlaps have been
detected perfectly. Thismodel, whichwas

widely applied for predicting assembly quality in the Sanger se-
quencing era, predicts that under ideal conditions, 710-bp reads
should require 33 coverage to produce 4-kbp average contig sizes,
while 30-bp reads would require 283 coverage. In practice, the
model is inadequate for modeling very short reads: The figure also
shows the actual contig sizes for the dog genome, assembled with
710-bp reads, and the panda genome, assembled with 52-bp reads.
The dog assembly tracked closely to the theoretical prediction,
while the panda assembly has contig sizes that are many times
lower than predicted by themodel. The large discrepancy between
predicted and observed assembly quality results from the fact that

Figure 2. Differences between an overlap graph and a de Bruijn graph for assembly. Based on the set
of 10 8-bp reads (A), we can build an overlap graph (B) in which each read is a node, and overlaps >5 bp
are indicated by directed edges. Transitive overlaps, which are implied by other longer overlaps, are
shown as dotted edges. In a de Bruin graph (C ), a node is created for every k-mer in all the reads; here
the k-mer size is 3. Edges are drawn between every pair of successive k-mers in a read, where the k-mers
overlap by k ! 1 bases. In both approaches, repeat sequences create a fork in the graph. Note here we
have only considered the forward orientation of each sequence to simplify the figure.

Figure 3. Expected average contig length for a range of different read
lengths and coverage values. Also shown are the average contig lengths
and N50 lengths for the dog genome, assembled with 710-bp reads, and
the panda genome, assembled with reads averaging 52 bp in length.

Schatz et al.
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separate paths. Short repeats of this type can be resolved, but they
require additional processing and therefore additional time.

Another potential drawback of the de Bruijn approach is that
the de Bruijn graph can require an enormous amount of computer
space (random access memory, or RAM). Unlike conventional
overlap computations, which can be easily partitioned into mul-
tiple jobs with distinct batches of reads, the construction and
analysis of a de Bruijn graph is not easily parallelized. As a result, de
Bruijn assemblers such as Velvet and ALLPATHS, which have been
used successfully on bacterial genomes, do not scale to large ge-
nomes. For a human-sized genome, these programs would require
several terabytes of RAM to store their de Bruijn graphs,which is far
more memory than is available on most computers.

To date, only two de Bruijn graph assemblers have been shown
to have the ability to assemble a mammalian-sized genome. ABySS
(Simpson et al. 2009) assembled a human genome in 87 h on
a cluster of 21 eight-core machines each with 16 GB of RAM (168
cores, 336 GB of RAM total). SOAPdenovo assembled a human ge-
nome in 40 h using a single computer with 32 cores and 512 GB of
RAM (Li et al. 2010). Although these types of computing resources
are not widely available, they are within reach for large-scale sci-
entific centers.

In theory, the size of the de Bruijn graph depends only on the
size of the genome, including polymorphic alleles, and should be
independent of the number of reads. However, because sequencing
errors create their own graph nodes, increasing the number of reads
inevitably increases the size of the de Bruijn graph. In the de novo
assembly of human from short reads, SOAPdenovo reduced the
number of 25-mers from 14.6 billion to 5.0 billion by correcting
errors before constructing the de Bruijn graph (Li et al. 2010). Its
error correction method first counts the number of occurrences of
all k-mers in the reads and replaces any k-mers occurring less than
three times with the highest frequency alternative k-mer.

Choice of assembler and
sequencing strategy
Only de Bruijn graph assemblers have
demonstrated the ability to successfully
assemble very short reads (<50 bp). For
longer reads (>100 bp), overlap graph as-
semblers have been quite successful and
have a much better track record overall. A
de Bruijn graph assembler should func-
tion with longer reads as well, but a large
difference between the read length and
the k-mer length will result in many more
branching nodes than in the simplified
overlap graph. The precise conditions un-
der which one assembly method is supe-
rior to the other remain an open question,
and the answer may ultimately depend
on the specific assembler and genome
characteristics.

As Figure 3 illustrates, there is a di-
rect and dramatic tradeoff among read
length, coverage, and expected contig
length in a genome assembly. The figure
shows the theoretical expected contigs
length, based on the Lander-Waterman
model (Lander and Waterman 1988), in
an assembly where all overlaps have been
detected perfectly. Thismodel, whichwas

widely applied for predicting assembly quality in the Sanger se-
quencing era, predicts that under ideal conditions, 710-bp reads
should require 33 coverage to produce 4-kbp average contig sizes,
while 30-bp reads would require 283 coverage. In practice, the
model is inadequate for modeling very short reads: The figure also
shows the actual contig sizes for the dog genome, assembled with
710-bp reads, and the panda genome, assembled with 52-bp reads.
The dog assembly tracked closely to the theoretical prediction,
while the panda assembly has contig sizes that are many times
lower than predicted by themodel. The large discrepancy between
predicted and observed assembly quality results from the fact that

Figure 2. Differences between an overlap graph and a de Bruijn graph for assembly. Based on the set
of 10 8-bp reads (A), we can build an overlap graph (B) in which each read is a node, and overlaps >5 bp
are indicated by directed edges. Transitive overlaps, which are implied by other longer overlaps, are
shown as dotted edges. In a de Bruin graph (C ), a node is created for every k-mer in all the reads; here
the k-mer size is 3. Edges are drawn between every pair of successive k-mers in a read, where the k-mers
overlap by k ! 1 bases. In both approaches, repeat sequences create a fork in the graph. Note here we
have only considered the forward orientation of each sequence to simplify the figure.

Figure 3. Expected average contig length for a range of different read
lengths and coverage values. Also shown are the average contig lengths
and N50 lengths for the dog genome, assembled with 710-bp reads, and
the panda genome, assembled with reads averaging 52 bp in length.

Schatz et al.

1168 Genome Research
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Paths through the de Bruijn graph are 
assembled sequences

These paths can be very complicated 
due to sequencing error, snp’s, 
splicing variants, repeats, etc

The graphs require considerable post-
processing to simplify them (pop 
bubbles, trim dead ends, etc)



After threading, Euler implements graph simplifications at regions
with low and high depth of coverage in reads. Euler's spur erosion
reduces branching in graph paths and thereby lengthens simple paths.
The spurs are presumed due to sequencing error that survived the
spectral alignment filter. Euler identifies remaining edges that appear
repetitive and removes them from the set of paths. This is equivalent
to breaking contigs at repeat boundaries in OLC assembly.

Reads from many platforms contain lower quality base calls at
their 3′ ends, and the problem can be exacerbated by long-read
protocols on short-read platforms. Euler addresses this problem by
trusting read prefixes more than their suffixes. It chooses trustable
prefixes during the error correction step. Prefix length varies per read.
During read threading, prefixes and suffixes can map to multiple
paths. By a heuristic, Euler trusts mappings that are significantly
better than their second-best choice. Just as the suffixes would add
coverage to a multiple sequence alignment, they add connectivity to
the graph. The extra sequence leads to greater contig size. Euler
chooses not to alter the assembly consensus sequence based on the
suffixes, so the mapped suffixes contribute connectivity only.

Overlap graphs are sensitive to the minimum overlap length
threshold, and K-mer graphs are sensitive to the parameter K. Larger
values of K resolve longer repeats but they also fracture assemblies in
regions of low read coverage. Euler addresses this with a heuristic.
Euler constructs and simplifies two K-mer graphs with different
values of K. It identifies edges present in the smaller-K graph that are
missing in the larger-K graph. It adds corresponding pseudo-edges to
the second graph. The borrowed edges extend paths in the second
graph and thus enlarge contigs in the assembly. This technique
effectively uses large K-mers to build reliable initial contigs, and then
fills gaps with more prolific small K-mers. This is analogous to gap
filling approaches in OLC assemblers [37].

Some of the Euler software incorporates another structure called
the A-Bruijn graph. It gets its name from being a combination of a de
Bruijn graph and an adjacency matrix or A-matrix. Nodes of the graph
represent consecutive columns in multiple sequence alignments.
Compared to nodes representing K-mers in individual reads, the
adjacency nodes can be less sensitive to sequencing error. The A-Bruijn
graphwasdeployed for converting a genomesequence to a repeat graph
and classifying repeats. It was proposed as a basis for assembly [26].

In summary, Euler compares de Bruijn graphs built from different
K-mer sizes. Euler applies heuristics to mitigate graph complexity

induced by sequencing error. It exploits low-quality read ends and
paired-end constraints to tease apart graph tangles induced by genomic
repeats. The software targets de novo assembly from short reads,
including paired-ends, from the Solexa platform.

The de Bruijn Graph in Velvet

Velvet [25,56] is a reliable and easy to use DBG assembler. Velvet
makes extensive use of graph simplification to reduce simple non-
intersecting paths to single nodes. Simplification compresses the
graph without loss of information. Velvet invokes the simplification
step during graph construction and again several times during the
assembly process. The technique, introduced as elimination of
singletons for K-mer graphs [24], is analogous to unitig formation in
overlap graphs [23] and OLC assemblers [37].

Velvet prunes the K-mer graph by removing spurs iteratively. Its
tip removal algorithm is similar to Euler's erosion procedure. The spur
removal drastically reduced the graph size on real data [25], possibly
because it was the pipeline's first attempt at filtering out base call
errors. Velvet does not implement Euler's spectral alignment filter.
Velvet has a parameter for theminimumnumber of occurrences in the
reads for a K-mer to qualify as a graph node. The Velvet publication
seems to discourage use of this naïve filter.

Velvet reduces graph complexity with a bounded search for
bubbles in the graph. Velvet's tour bus algorithm uses breadth-first-
search, fanning out as much as possible, starting at nodes with
multiple out-going edges. Since graphs of real data can have bubbles
within bubbles, an exhaustive search for all bubbles would be
impractical. The search is bounded to make it tractable; the candidate
paths are traversed in step, moving ahead one node on all paths per
iteration, until the path lengths exceed a threshold. Velvet narrows
the bubble candidates to those with a sequence similarity require-
ment on the alternate paths. Having found a bubble, Velvet removes
the path representing fewer reads and, working outside the graph, re-
aligns reads from the removed path to the remaining path. Because
higher read multiplicity determines the target path, the re-aligner
effectively calls the consensus bases by a column-wise voting
algorithm. The operation risks “papering over” genuine sequence
differences due to polymorphism in the donor DNA or over-collapse of
near-identical repeats. Velvet's algorithm is similar to bulge removal

Fig. 4. Three methods to resolve graph complexity. (a) Read threading joins paths across collapsed repeats that are shorter than the read lengths. (b) Mate threading joins paths
across collapsed repeats that are shorter than the paired-end distances. (c) Path following chooses one path if its length fits the paired-end constraint. Reads andmates are shown as
patterned lines. Not all tangles can be resolved by reads and mates. The non-branching paths are illustrative; they could be simplified to single edges or nodes.
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length. Each single-base sequencing error induces up to K false nodes
in the K-mer graph. Each false node has a chance of matching some
other node and thereby inducing a false convergence of paths.

Real-world WGS data induces problems in overlap graphs and
K-mer graphs.

• Spurs are short, dead-end divergences from the main path (Fig. 3a).
They are induced by sequencing error toward one end of a read.
They can be induced by coverage dropping to zero.

• Bubbles are paths that diverge then converge (Fig. 3b). They are
induced by sequencing error toward the middle of a read, and by
polymorphism in the target. Efficient bubble detection is non-trivial
[28].

• Paths that converge then diverge form the frayed rope pattern
(Fig. 3c). They are induced by repeats in the target genome.

• Cycles are paths that converge on themselves. They are induced by
repeats in the target. For instance, short tandem repeats induce
small cycles.

In general, branching and convergence increases graph complex-
ity, leading to tangles that are difficult to resolve. Much of the
complexity is due to repeats in the target and sequencing error in the
reads.

In the graph context, assembly is a graph reduction problem.
Most optimal graph reductions belong to a class of problems, called
NP-hard, for which no efficient solution is known [29]. Therefore,

assemblers rely on heuristic algorithms and approximation algo-
rithms to remove redundancy, repair errors, reduce complexity,
enlarge simple paths and otherwise simplify the graph.

Greedy Graph-based Assemblers

The first NGS assembly packages used greedy algorithms. These
have been reviewed well elsewhere [3,30].

The greedy algorithms apply one basic operation: given any read
or contig, add onemore read or contig. The basic operation is repeated
until no more operations are possible. Each operation uses the next
highest-scoring overlap to make the next join. The scoring function
measures, for instance, the number of matching bases in the overlap.
Thus the contigs grow by greedy extension, always taking on the read
that is found by following the highest-scoring overlap. The greedy
algorithms can get stuck at local maxima if the contig at hand takes on
reads that would have helped other contigs grow even larger.

The greedy algorithms are implicit graph algorithms. They
drastically simplify the graph by considering only the high-scoring
edges. As an optimization, they may actually instantiate just one
overlap for each read end they examine. They may also discard each
overlap immediately after contig extension.

Like all assemblers, the greedy algorithms need mechanisms to
avoid incorporating false-positive overlaps into contigs. Overlaps
induced by repetitive sequence may score higher than overlaps
induced by common position of origin. An assembler that builds on
false-positive overlaps will join unrelated sequences to either side of a
repeat to produce chimera.

SSAKE [31] was the first short-read assembler. It was designed for
unpaired short reads of uniform length. It was based on the notion
that high coverage would provide a tiling in error-free reads if the
erroneous reads could be avoided. SSAKE does not use a graph
explicitly. It does use a lookup table of reads indexed by their prefixes.
SSAKE iteratively searches for reads that overlap one contig end. Its
candidate reads must have a prefix-to-suffix identical overlap whose
length is above a threshold. SSAKE chooses carefully among multiple
reads with equally long overlaps. First, it prefers reads with end-to-
end confirmation in other reads. This favors error-free reads. Second,
the software detects when the set of candidates presents multiple
extensions. In particular, it detects when the candidate read suffixes
exhibit differences that are each confirmed in other reads. This is
equivalent to finding a branch in a graph. At this point, the software
terminates the contig extension. Users can elect to override the
“stringent” behavior, in which case SSAKE takes the higher-scoring
extension. When no reads satisfy the initial minimum threshold, the
program decrements the threshold until a secondminimum is reached.
Thus, user settings determine how aggressively SSAKE extends through
possible repeat boundaries and low-coverage regions. SSAKE has
been extended to exploit paired-end reads and imperfectly matching
reads [32].

SHARCGS [33] also operates on uniform-length, high-coverage,
unpaired short reads. It adds pre- and post-processor functionality to
the basic SSAKE algorithm. The pre-processor filters erroneous reads
by requiring a minimum number of full-length exact matches in other
reads. An even higher-stringency filter is optional, requiring that the
combined QVs of matching reads exceed a minimum threshold.
SHARCGS filters the raw read set three times, each at a different
stringency setting, to generate three filtered sets. It assembles each set
separately by iterative contig extension. Then, in a post-process, it
merges the three contig sets using sequence alignment. The merger
aims to extend contigs from highly confirmed reads by integrating
longer contigs from lower-stringency filters.

VCAKE [34] is another iterative extension algorithm. Unlike its
predecessors, it could incorporate imperfect matches during contig
extension. VCAKE was later combined with Newbler in a pipeline for
Solexa+454 hybrid data [35]. Another pipeline had combined

Fig. 2. A pair-wise overlap represented by a K-mer graph. (a) Two reads have an error-
free overlap of 4 bases. (b) One K-mer graph, with K=4, represents both reads. The
pair-wise alignment is a by-product of the graph construction. (c) The simple path
through the graph implies a contig whose consensus sequence is easily reconstructed
from the path.

Fig. 3. Complexity inK-mer graphs can bediagnosedwith readmultiplicity information. In
these graphs, edges represented in more reads are drawn with thicker arrows. (a) An
errant base call toward the end of a read causes a “spur” or short dead-end branch. The
same pattern could be induced by coincidence of zero coverage after polymorphismnear a
repeat. (b) An errant base call near a read middle causes a “bubble” or alternate path.
Polymorphisms between donor chromosomeswould be expected to induce a bubblewith
parity of readmultiplicity on the divergent paths. (c) Repeat sequences lead to the “frayed
rope” pattern of convergent and divergent paths.
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de novo sequencing and de Bruijn graph 
assembly requires very deep sequencing

Typically >100 fold coverage

Even then, assemblies are quite 
fragmented

Can’t resolve repeats longer than the 
DNA fragments that are sequenced



Paired end sequencing helps by providing 
structural information longer than read 
length



DNA molecule

Read (sequence data)
Read (sequence data)

Most short read sequencers 
generate reads from the ends 
of the DNA molecules



Other tools provide longer range structural 
information, e.g.:

- Mate pair sequencing provides 
read pairs that are several kb apart

- Moleculo generates virtual long 
(~10 kb) reads by preserving 
information on which reads come 
from the same fragments

- Restriction site mapping



BioNano and Nabsys both map restriction 
sites at very large scale

Can be used to stitch together assembly 
fragments

http://www.bionanogenomics.com/technology/irys-technology/ 

http://www.bionanogenomics.com/technology/irys-technology/


Annotation



A genome sequence on its 
own usually isn’t very 
interesting

You also want to have data 
about the genome sequence 
that tells you where genes, 
regulatory elements, and 
other features are



A genome sequence on its 
own usually isn’t very 
interesting

You also want to have data 
about the genome sequence 
that tells you where genes, 
regulatory elements, and 
other features are



Annotation based on 
sequence alone usually has 
mixed success

Transcriptome and other 
external data greatly facilitate 
annotation



Next next generation: 
Long reads



Longer reads:

- Make assembly easier

- Have more information (eg 
improved knowledge of 
phasing, repeat structure, etc)



Illumina now produces high 
quality “short” reads on the 
order of 300 bp



Short read error rates

294 VOLUME 31   NUMBER 4   APRIL 2013   NATURE BIOTECHNOLOGY

contrast, the rate of indels in the PGM data 
doubled after the introduction of a new 
enzymatic formulation with the 300-bp 
chemistry. For the newest chemistries, all 
three platforms had substitution error rates 
of the same order of magnitude, whereas 
the MiSeq clearly had the lowest number of 
indels per read.

To detect differences in gene content using 
NGS, one must generate accurate de novo 
assemblies. De novo assemblers combine 
reads to create full-length contiguous 
sequences without the guidance of a reference 
genome. We obtained de novo assembly 
metrics by applying the overlap-based 
genome assembler MIRA (version 3.4.0). 
Assembly efficiency is greatly influenced 
by the number of reads covering the 
entire genome. Furthermore, with higher 
coverage, the computational effort increases 
substantially. Therefore, we first evaluated 
how increasing coverage affects N50 contig 
size (a statistic for describing the distribution 
of contig lengths in an assembly)3 for the 
three platforms with their newest available 
chemistries (Supplementary Fig. 1). For 
MiSeq, a coverage of >75-fold did not yield 
further improvement in terms of N50. This 
is consistent with results obtained using 
simulated 75-bp PE data and the Velvet 
assembler4. The optimal coverage using data 
from the PGM instrument was ~40-fold. 
In contrast to results obtained using data 
from the MiSeq, the N50 size of assemblies 
based on data from the PGM decreased 
after reaching the optimal coverage. For the 
GSJ, even combined data from two runs did 
not yield optimum or plateau N50 values. 
Therefore, all further de novo assembly 
metrics were computed with data randomly 
subsampled to 75-fold coverage for the 
MiSeq, 40-fold coverage for the PGM and the 
two combined GSJ runs. When comparing 
GSJ data with MiSeq 2 = 150-bp PE and 
PGM 100-bp or 200-bp data, we obtained 
assemblies from the GSJ data that were 
less fragmented, owing to the longer read 

To the Editor:
In April 2012, your journal published a 
study by Loman et al.1 that systematically 
compared desktop next-generation 
sequencers (NGS) from three instrument 
providers. Using the custom scripts supplied 
by the authors, the same software and the 
same draft genome (with 153 remaining gaps 
within several scaffolds) as the reference, 
we reproduced their results with their data 
of the enterohemorrhagic Escherichia coli 
(EHEC) strain found in the 2011 outbreak in 
Germany. However, we wish to bring readers’ 
attention to some shortcomings in the report 
from Loman et al.1, focusing particularly on 
its discussion of read-level error analysis. 

NGS is a rapidly changing market, which 
clearly complicates the comparisons such as 
that made by Loman et al. Since the original 
study1, Illumina (San Diego) has launched the 
MiSeq sequencer officially and has released 
Nextera library construction kits and 2 × 
250–base-pair (250-bp) paired-end (PE) 
sequencing chemistry. Furthermore, Life 
Technologies (Carlsbad, California), has made 
200-bp and 300-bp kits available for the Ion 
Torrent Personal Genome Machine (PGM). 
Roche (Basel, Switzerland) has updated the 
Sequencing System software for its 454 GS 
Junior (GSJ) from version 2.6 to 2.7. In this 
report, we provide an up-to-date snapshot of 
how benchtop platforms have evolved since 
the previous study1.

To assess accuracy and the contiguity of 
draft assemblies on a finished genome, we 
based our analysis on the finished sequence of 
the enterohemorrhagic E. coli O157:H7 Sakai 
strain2. All Sakai DNA used in this study 
was prepared from the same subcultivation. 
Aliquots of this DNA were shipped to three 
academic institutions for whole-genome 

sequencing on the GSJ, MiSeq and PGM. 
The three institutions chosen are successful 
operators of the respective instruments. Thus, 
no NGS platform manufacturer was involved 
with this study. For all three platforms, the 
latest available software and most recent 
chemistries (that is, the GSJ Titanium, the 
MiSeq Nextera library with 2 = 250-bp PE and 
the PGM 300-bp kit) were applied.

By assembling sequencing reads against 
the existing Sakai backbone genome 
(Supplementary Methods), we generated 
run and mapping metrics for each benchtop 
sequencer (Supplementary Table 1). Of the 
three instruments, the GSJ produced the 
lowest throughput, which was insufficient 
for assembling typical bacterial genomes. 
Therefore, we combined two GSJ runs into 
a single data set for all subsequent analyses. 
The relationship between chromosomal and 
plasmid (large plasmid pO157 and small 
plasmid pOSAK1) average coverage was 
similar for all data. The coverage along the 
genome was even for all technologies (data 
not shown).  GSJ produced the longest reads, 
with a mean length of 466 bases. The mean 
read length increased for MiSeq from 142 
bases (2 × 150-bp PE) to 214 bases (2 × 250-
bp PE) and for PGM from 116 bases (100-bp 
kit) to 195 bases (300-bp kit). Comparison 
of error frequencies on read level per 100 bp 
showed that rates of insertion and deletion 
(indel) and substitution for MiSeq 2 × 150-bp 
PE and GSJ were similar to those reported 
by Loman et al.1 (Table 1). However, we also 
observed a fourfold decreased substitution 
rate and a threefold lower indel rate for 
the 100-bp PGM, compared with previous 
results from Loman et al.1. The error profile 
was unchanged by the use of longer  
(2 × 250-bp PE) MiSeq read lengths. In 

Table 1  Insertion/deletion and substitution errors on read level for benchtop NGS platforms

Platform Sequencing kit Library Strain Date of sequencing
Indels per 
100 bp

Indels per 
read

Substitutions  
per 100 bp

Substitutions 
per read

GSJ GSJ Titanium Nebulization / AMPure XP Sakai June 2012 0.4011 1.8351 0.0543 0.2484

MiSeq 2 = 150-bp PE Nextera Sakai June 2012 0.0009 0.0013 0.0921 0.1318

MiSeq 2 = 250-bp PE Nextera Sakai September 2012 0.0009 0.0018 0.0940 0.2033

PGM 100 bp Bioruptor / Ion Fragment Library Sakai July 2011 0.3520 0.3878 0.0929 0.1024

PGM 200 bp Ion Xpress Plus Fragment Sakai July 2012 0.3955 0.6811 0.0303 0.0521

PGM 300 bp Ion Xpress Plus Fragment Sakai August 2012 0.7054 1.4457 0.0861 0.1765

PGM 400 bpa Ion Xpress Plus Fragment Sakai November 2012 0.6722 1.8726 0.0790 0.2202
Error rates were calculated by counting indels and substitutions in the mapping against the EHEC Sakai reference sequence for each uniquely mapped read.  
aKit was not officially available during time of study.

Updating benchtop sequencing 
performance comparison

CORRESPONDENCE

http://www.nature.com/nbt/journal/v31/n4/pdf/nbt.2522.pdf

Indel error rates 0.001%  to 0.7%

Substitution error rates < 0.1%



Long read platforms now 
generate reads >10 kb

But the error rate is quite high



0.01% 0.1% 1% 10% 100%

PacBio(14%)

Oxford !
Nanopore(4%?)

Illumina (0.1%)

Random !
guessing (75%)

Error rate comparison



How can we use sequence 
data with such a high error 
rate?

Use high quality short reads to “fix” 
low quality long reads prior to 
assembly (e.g. https://github.com/
jgurtowski/ectools)

https://github.com/jgurtowski/ectools


http://schatzlab.cshl.edu/presentations/2014-02-19.Brown.Assembly%20and%20Disease%20Analytics.pdf

Assembly Complexity of Long Reads 
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http://schatzlab.cshl.edu/presentations/2014-02-19.Brown.Assembly%20and%20Disease%20Analytics.pdf


https://en.wikipedia.org/wiki/Genome_size#mediaviewer/File:Genome_Sizes.png

2013 2014 2015?
Assembly N50 = Chromosome N50



https://en.wikipedia.org/wiki/Genome_size#mediaviewer/File:Genome_Sizes.png

2013 2014 2015?
Speculative extrapolation

2017? 2019? 2021?



Summary: 
!

Whole genome de novo 
assembly



Advantages
Extensive biological 
information
Low ascertainment bias
Can use in combination with 
all other enrichment methods



Challenges
Not yet tractable for large 
genomes
Still expensive for medium-
sized genomes
Assembly and annotation still 
very labor intensive



Typical use case
Now widely used to study 
molecular evolution of 
microbes

Targeted application to small 
numbers of medium-sized 
genomes



Background reading:
Schatz, M. C., Delcher, A. L. & Salzberg, S. L. Assembly 
of large genomes using second-generation sequencing. 
Genome Research 20, 1165–1173 (2010). http://
dx.doi.org/10.1101/gr.101360.109 

http://dx.doi.org/10.1101/gr.101360.109


Whole genome
(reference mapping)



Mapping is an alternative to 
assembly

New data are mapped to an 
existing reference sequence

Requires far less data than de 
novo assembly



Data Preprocessing:
Map to reference

Consensus construction

Annotation



Sample Reads

Reference !
Sequence

Map
Sample !
Sequence



Many mapping tools, eg 
bowtie

Many tools for processing 
mapped reads, eg samtools



Advantages
Inexpensive

Preprocessing is simpler than 
for de novo assembly



Challenges
Requires a reference 
sequence from a very closely 
related taxon

Can be biased by reference 
(e.g., miss structural 
differences)



Typical use case
Human and model system 
resequencing



Background reading:
Consortium, T. 1. G. P. et al. A map of human genome 
variation from population-scale sequencing. Nature 467, 
1061–1073 (2010). http://dx.doi.org/10.1038/
nature09534 

http://dx.doi.org/10.1038/nature09534


Transcriptomes



Sample preparation





Some options for preservation

Freeze tissue (-80°C or colder)

RNALater (Ambion), kept cold

Extract RNA in the field

Homogonize in Trizol, keep cold





mRNA isolation - Lots of tissue

Isolate Total RNA with Trizol

!

Digest DNA

!

Isolate mRNA



mRNA isolation - Small amount 
of tissue

mRNA straight from tissue 

(eg Dynabeads mRNA DIRECT Kit)

http://products.invitrogen.com/ivgn/en/US/adirect/invitrogen?cmd=catProductDetail&showAddButton=true&productID=61011&_bcs_=H4sIAAAAAAAAAO1QXUvDMBT9NXlxdDQN6%2FbaWQuizGH1wScJ7W0bSJOS3HX033vjbMUh%2FgIh3NzP%0Ac889EWfx7uhsfarQr1iSrkpwo6rA%2F5HvEAcmMpYU9M7n81qZUaGzLZh1ZXtKeoVA38mTAUOms31I%0AzIiRNHW0ICZFNgxaVRKVNX7dYa9pC0tEePEO3QlCHG8D2Qbf%2BTbmNNSQs%2BUxv6Fs%2F3zIVvfe6k%2BM%0Aa47D19proiLbxVRWY2tmoq8lGVkrBxWG0jLARFH1NRM50cyVH7ScSpw0XZWG8OKLvFSm1fAII%2Bhb%0AidBaN1EHzTzARGUemKdPR3IbpREcRRcngBxkHzDCMSzZf58z97xMQ6jzJRFgZj02PxVZ5Guk9lf6%0ApbN%2B6ebSnL8dsv1dltPxqYOWif2%2FhL9I%2BAEJQfdQLgMAAA%3D%3D&returnURL=http%3A%2F%2Fproducts.invitrogen.com%3A80%2Fivgn%2Fen%2FUS%2Fadirect%2Finvitrogen%3Fcmd%3DcatDisplayStyle%26catKey%3D101%26filterType%3D1%26OP%3Dfilter%26filter%3Dft_1701%252Ff_177101*


RNA quality is (almost) 
Everything!

Avoid contamination

Reduced sample size requirements 
have improved this



RNA quality is (almost) 
Everything!

Quantity matters - be cautious 
working at the bottom range of 
sample requirements



RNA quality is (almost) 
Everything!

Amount of ribosomal RNA matters

There are tradeoffs between rRNA 
fraction and yield. If material is 
limiting, purify less and sequence 
more



Transcriptome Assembly



Transcriptome assembly has 
the same challenges as 
genome assembly…

… and then some.



Transcript splicing

en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg

mRNA’s are spliced before leaving 
the nucleus

http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg


Transcript splicing

en.wikipedia.org/wiki/File:Alt_splicing_bestiary2.jpg

With deep sequencing, 
many splice variants 
are sequenced for 
each gene

http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg


Genome
...aagtcagtggagatgcaccatgagaccttggaagaagctgtccctggagacaatgtgggt...!

Assembly results...

Transcript

...aagtcagta

ggagatgcaccatgag

ccttggaagaag

agacaatgtgggt...ctgtccctgg

gtccct



-Different splice variants for a given 
gene can vary widely in abundance

Splice variants

-Deep sequencing captures some 
“intermediate splice variants”, molecules 
in the process of being spliced
-Sequencing and assembly errors can 
be misinterpreted as splice variants
-Data may be insufficient to predict 
splice variants



It gets worse...



Genomes have uniform depth

Assemblers can make assumptions about 
uniform distribution of sequencing effort

Poisson 

distribution

en.wikipedia.org/wiki/!
File:Poisson_pmf.svg

http://en.wikipedia.org/wiki/File:Pre-mRNA_to_mRNA.svg


But transcriptomes have non-
uniform depth

- Different expression across 
genes

- Different splice variants 
within genes



- Can’t assume that the expected 
frequency of sequences is uniform 
across or even within genes

Expression differences mean:

- Low copy number doesn’t 
necessarily indicate an error

- High copy number doesn’t 
necessarily indicate a repeat
- Sequencing error is hard to 
accommodate in transcriptomes



When assembling 
transcriptomes, it is essential 
to use an assembler that can 
explicitly accommodate splice 
variants and expression 
differences!!!!!



Agalma
Our automated transcriptome 
workflow



Why automate?
So that results are 
reproducible.



Why automate?
So that results can 
be easily explored 
and extended.



Why automate?
So that methods can 
be compared in a 
controlled setting.



Why automate?
To facilitate methods 
development by enabling 
people to focus on 
particular steps without 
reinventing everything.



- Reconstituting the raw data can 
take weeks
- Methods descriptions are often 
incomplete
- Manual steps are often 
subjective
- Code is often not provided

Why reproducing studies is 
hard:



https://bitbucket.org/caseywdunn/agalma
The tool

https://bitbucket.org/caseywdunn/agalma


https://bitbucket.org/caseywdunn/
dunnhowisonzapata2013/

Example analyses

https://bitbucket.org/caseywdunn/
dunnhowisonzapata2013/downloads

Five siphonophores

https://bitbucket.org/caseywdunn/dunnhowisonzapata2013/
https://bitbucket.org/caseywdunn/dunnhowisonzapata2013/downloads


Phylogenomic analyses of deep gastropod 
relationships reject Orthogastropoda
Felipe Zapata, Nerida G Wilson, Mark 
Howison, Sónia CS Andrade, Katharina 
M Jörger, Michael Schrödl, Freya E 
Goetz, Gonzalo Giribet, Casey W Dunn

http://dx.doi.org/10.1101/007039

http://dx.doi.org/10.1101/007039
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Figure  3.  Summary  tree  for  analyses  of  Supermatrices  1.  (a)  Rooted  phylogram  of  the  

maximum  likelihood  OMA  analysis,  including  outgroup  taxa.  Branch  support  values  are  shown  on  

descendent  nodes.  The  areas  of  the  lollipops,  which  are  centered  on  the  branch  tips,  are  

proportional  to  the  number  of  genes  sampled  in  OMA  supermatrix  1.  (b)  Unrooted  cladogram  of  

 on August 1, 2014http://biorxiv.org/Downloaded from 

Includes a tree…



Includes a repository of all agalma commands
https://bitbucket.org/caseywdunn/gastropoda/src



Agalma
- Filter adapters/ low quality reads

- Assemble ribosomal RNA

- Remove all ribosomal RNA reads

- Assemble full dataset

- Put assemblies in database

Agalma can also:

- Import reads directly from SRA

- Process externally produced assemblies

For each transcriptome:



Agalma

- Identify homologs (all-by-all blastp, mcl)

- Build gene trees (raxml)

- Identify orthologs (based on tree 
topologies)

- Build preliminary species trees (raxml)

Across transcriptomes:



Agalma
- Built on our BioLite framework

- (Relatively) easy to install

- Catalogs specimen data

- Records detailed diagnostics

- Detailed provenance

- Checkpoints (can be restarted)

- Modular

- Generates html reports bundled 
with output files



Agalma Report
Distribution of library insert sizes



Agalma Report



Agalma Report
Distribution of sequencing effort across genes



Agalma Report
Reduction in number of genes at each step of 
matrix construction



Agalma Report



Agalma Report
And preliminary trees...Figure 3: The preliminary maximum likelihood phylogeny resulting from the example

analysis. This tree was inferred from the protein supermatrix under the WAG+ � model.

15



Agalma Report
Resource Usage for Agalma elegans (Runs 2,7-8,11,32,34)

Calls longer than 1% of total runtime

## Stage / CallStage / Call RuntimeRuntime User CPU%User CPU% System CPU%System CPU% Peak MemoryPeak Memory

2 ▣ sanitize.sanitize.filter_illumina 48:53 26% 72% 1.3 MB

12 ▣ remove_rrna.bowtie.bowtie2 27:56 1583% 14% 781.4 MB

16 ▣ remove_rrna.exclude_ids.exclude 42:01 15% 84% 96.8 MB

17 ▣ assemble.quality_filter.filter_illumina 37:18 16% 83% 1.3 MB

18 ▣ assemble.trinity.butterfly 12:42:27 750% 118% 26.3 GB

22 ▣ postassemble.coverage.bowtie2 1:16:11 1569% 10% 898.0 MB

23 ▣ postassemble.nr_annotate.blastx 9:01:35 1569% 3% 222.7 MB

Resource utilization



Downstream from Agalma

Think of Agalma as a tool for 
generating alignments of 
homologous genes. It is up to you 
to figure out the appropriate 
phylogenetic analyses to resolve 
the relationships between species.



Summary: 
!

Transcriptomes



Advantages
Can be readily applied across a 
broad diversity of species

Very cost effective way to collect 
protein coding regions

Very effective for gene discovery

Select genes after sequencing



Challenges
Requires high quality RNA

Ascertainment bias - only 
gives expressed genes

Assembly can be tricky



Typical use case
Phylogenetic analyses with 
broad taxon sampling

Evolutionary development, 
physiology, ecology studies



Background reading:

Felipe Zapata, Nerida G Wilson, Mark Howison, 
Sónia CS Andrade, Katharina M Jörger, Michael 
Schrödl, Freya E Goetz, Gonzalo Giribet, Casey W 
Dunn. Phylogenomic analyses of deep gastropod 
relationships reject Orthogastropoda. Biorxiv. http://
dx.doi.org/10.1101/007039

Dunn, C. W., Howison, M. & Zapata, F. Agalma: an 
automated phylogenomics workflow. BMC 
Bioinformatics 14, 330 (2013). http://dx.doi.org/
10.1186/1471-2105-14-330 

http://dx.doi.org/10.1101/007039
http://dx.doi.org/10.1186/1471-2105-14-330


RADseq



Digest genomic DNA with one 
or more restriction enzymes

Size select restriction 
fragments

Sequence fragments

Data acquisition



Consolidate redundant reads

Data preprocessing

Identify homologous reads 
across samples



Advantages
Inexpensive

Sequence tags are broadly 
sampled across the genome

Relatively simple 
preprocessing



Challenges
Can only compare data 
across closely related taxa

Little control over which 
particular regions are 
sequenced

Size selection can be tricky



Typical use case
Population genetics within 
species



Background reading:
Peterson, B. K., Weber, J. N., Kay, E. H., Fisher, H. 
S. & Hoekstra, H. E. Double Digest RADseq: An 
Inexpensive Method for De Novo SNP Discovery 
and Genotyping in Model and Non-Model Species. 
PLoS ONE 7, e37135 (2012). http://dx.doi.org/
10.1371/journal.pone.0037135

http://dx.doi.org/10.1371/journal.pone.0037135


Targeted 
enrichment



Select genes

Design capture probes that 
hybridize to genes

Use probes to pull out selected 
genes from fragmented DNA

Data acquisition



(Select genes)

Assemble reads into gene 
sequences

Annotate selected genes

Data preprocessing



Advantages
Inexpensive
Strong control over which regions are 
sequenced
Greatly simplified assembly and 
annotation

Works great on poorly preserved 
specimens



Challenges
Need to know what genes to 
sequence before you start

Difficult to integrate data across 
studies with different genes

Need to optimize for different 
clades

Ascertainment biases



Typical use case
Phylogenetic analyses with 
broad taxon sampling



Background reading:
Lemmon, A. R., Emme, S. A. & Lemmon, E. M. 
Anchored Hybrid Enrichment for Massively High-
Throughput Phylogenomics. Syst. Biol. 61, 727–744 
(2012). http://dx.doi.org/110.1093/sysbio/sys049

http://dx.doi.org/10.1093/sysbio/sys049


Directed PCR



Select genes

Design primer pairs that 
hybridize to genes

Amplify and sequence genes

Data acquisition



(Select genes)

Assemble reads into gene 
sequences

Data preprocessing



Advantages
Easy to integrate with existing 
data

Strong control over which 
regions are sequenced

Greatly simplified assembly 
and annotation



Challenges
Need to know what genes to 
sequence before you start

Very labor intensive for more 
than a few genes

Need to optimize for different 
clades



Typical use case
“Phylodiversity” studies, i.e. 
small number of genes from 
many taxa



Other 
enrichment 
tools…



SNP chips



http://www.illumina.com/technology/beadarray-technology/infinium-hd-assay.ilmn





https://www.23andme.com/ancestry/



Advantages
Very inexpensive

Simple data preprocessing



Challenges
Extremely expensive initial 
investment

Only works for very closely 
related taxa



Typical use case
Human and model systems

(an inexpensive alternative to 
reference mapping)





Part II: 
Using trees to 
study genome 
function



1. The study of genome evolution in a 
phylogenetic context

What does “phylogenomics” 
mean?

2. The inference of species 
phylogenies with genome data

3. The inference of species 
phylogenies with data from lots of 
genes



1. The study of genome evolution in a 
phylogenetic context

What does “phylogenomics” 
mean?

2. The inference of species 
phylogenies with genome data

3. The inference of species 
phylogenies with data from lots of 
genes



How do we make links 
between genes and 
phenotypes when we can’t 
do genetics?





Phylogenetic studies now 
generate:

- Species trees

- Extensive gene sequence data

- Well sampled gene trees



www.rcsb.org/

Sequences relevant to focal phenotypes

signal 
transduction

carbon 
sequestrationphotosynthesis

morphogenesis

http://rna.ucsc.edu/rnacenter/ribosome_images.html


But we don’t know which 
genes are relevant to 
which phenotypes



Genomes Morphology, 
function, 
ecology, 

development
>FZTBY7Y04I0Z6U rank=0418088 x=3584.5 y=3492.0 length=457 
CAAGGTCTTGAACCAACAGTTGGATACAATTCAGAATGACGGAATGAAAGAAATCCATTT 
CACTGGTCATGTTGACTTTTTCCACGTGTTCTGGATCGATCTTCTCCTTTAACTTCTCCT 
GAAGCTGTTGTGTTGTCTCCTGGCAGTATTCGCATGTCGTCAGTACACAACATATCAACC 
TCCGTTCGTCTTCGTTGAACTTCACGTCGTTGTCCTTCAAGATGCTCGAAATACCGCCCG 
TCGAAGAAACCTTGGGTAAGGCTTCCCAGCAGAAGGCGATTAGTGTATTCCACCAGGTAT 
CTACTTGAACGTATCTGTAGAAAGGGAAGAAGCAGAGGTTGCCACTGCTCAACTGAACGC 
ATTGCACCATACTCTTCTTGAAGAAGACAAACAACTCGCCAGCACTCGGGAGAACTGTCC 
CTTCGGAATCCTCGCCGAGTTTTGGAACACCTTGTTC 
>FZTBY7Y04IQ5F0 rank=0418094 x=3472.5 y=2494.5 length=288 
AATGAAATATGCTGAGCAGTTCAAGTTTCTATACTCACGAAGAAACAACATTGTAGATGG 
TTCATACGAACCCAACAATGAAGAGGCGGTTTGGGTTGATCCTTTAGAAGAATTGGTTGA 
ACAGTTGAATAAGGGTGGTGAAGAAAAGCTGAATCTGAGAAAACTGAAGAAGAGAAATTG 
GCTGGATGGTGTGAAAACTTTATCATTTGGTGAAGAACACAAAAGGTATTCCTGAATTTT 
GGCTCACTGCAATGAAGAACGTTGAAATACTTGAAGATATGATTCAGG 
>FZTBY7Y04IQ7J9 rank=0418096 x=3473.0 y=1143.0 length=421 
AGGCCGGGGCCTTTCGATTAAGATATCTAAAAGAGTTTGGTTCTCCACGGAGCTAAGGCT 
AACAAATCTACGTAAATCTTGCATTTGTTGCAACCTTCTCTATTAAAAATGTCTGACACA 
TCTGTATCCGAACTTGCCTGTGTATACAGTGCCCTTATTTTATACGATGATGATATCGAT 
ATCACAGGAGAAAAAAATGGCTAAAATCATCGCTGCTGCCAACGTCAACGTAGAAACCTT 
CTGGCCTGGACTCTTCGCCAAGGCTCTCCAAGGACGTAACATCGGTGACCTTATCTGCAA 
TGTAGGATCCTCCGCAGCCGCTGCTCCAGCCGCCGCTGCTGCTGCTGGTGATGCTCCAGC 
TGCTGCTGAAGAGAAGAAGAAGAAAAGAAGGTCAGTTCAGATGAGGATCAGATGATGATA 

Evolutionary 
functional 
genomics

A small glimpse of a much greater schism



Measuring expression



(S Haddock)

(MBARI)



Which genes are 
differentially expressed 

between bodies in a 
siphonophore colony?




Reads

Reference

Map



Gene001 4

Gene002 6

Gene003 22

Gene004 1

Gene005 2

Gene Count



(C Carré)

Nanomia !
bijuga



(MBARI)







(C Carré)

Swimming

Feeding

Paired samples, 3 specimens



Tissue A Tissue B

Specimen 1 X Reads X Reads

Specimen 2 X Reads X Reads

Specimen 3 X Reads X Reads

Replicated design



Helicos SOLiD Illumina



Genes with significant DE

EdgeR, Bonferroni corrected p < 0.05

Genes with!
complete!

3’ end

(http://dx.doi.org/10.1371/journal.pone.0022953)

http://dx.doi.org/10.1371/journal.pone.0022953


Where to next?
Characterization of genes with 
significant differential 
expression



Feeding
Sw

im
m

ing

Overall expression
Mini-collagen

Red genes have significant differential expression



(C Carré)

Cells expressing mini-collagen are blue

swimming!
bodies

feeding 
bodies





Feeding
Sw

im
m

ing

Overall expression

Red genes have significant differential expression



Uh oh.
“Data deluge”

“Firehose of data”
“I’m drowning in data.”

“Data overload”



The problem isn’t too 
much data.

We need more data that 
tell us about our data



What other data do we 
need?

Comparative data - we 
need to be looking at a 
lot more than one 
species at a time.



Current approach: 
Which genes have expression 
correlated with my phenotype of 
interest?

New approach: 
Which genes have evolutionary 
changes in expression that are 
coincident with changes in my 
phenotype of interest?



Analyze expression data on phylogenies
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Expression data Gene trees



(C Carré)

Nanomia  
bijuga

Frillagalma 
vityazi

Bargmannia 
elongata

(S Haddock)
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LogFC - the log base 2 of 
expression in swimming/ 
feeding bodies

Gene tree

Overview



Find gene families that always have differential 
expression in the same direction
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 predicted protein [Nematostella vectensis] >gi|156218368|gb|EDO39266.1| predicted protein [Nematostella vectensis] 
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This approach can be used to

- Identify genes that have shifts in 
expression associated with shifts in 
other phenotypes of interest

!

- Genes that have evolutionary 
covariance in expression



Collaborators
Joe Felsenstein (UW)

Xi Luo (Brown)

Zhijin Wu (Brown)

NSF- DEB, Waterman Award
Support



Why use phylogenies to 
analyze expression across 
species?

Trait 1

Tr
ai

t 2

n=15



Why use phylogenies to 
analyze data across species?

Trait 1

Tr
ai

t 2

n=2



Vol. 125, No. 1 The American Naturalist January 1985 

PHYLOGENIES AND THE COMPARATIVE METHOD 

JOSEPH FELSENSTEIN 

Department of Genetics SK-50, University of Washington, Seattle, Washington 98195 

Submitted November 30, 1983; Accepted May 23, 1984 

Recent years have seen a growth in numerical studies using the comparative 
method. The method usually involves a comparison of two phenotypes across a 
range of species or higher taxa, or a comparison of one phenotype with an 
environmental variable. Objectives of such studies vary, and include assessing 
whether one variable is correlated with another and assessing whether the regres-
sion of one variable on another differs significantly from some expected value. 
Notable recent studies using statistical methods of this type include Pilbeam and 
Gould's (1974) regressions of tooth area on several size measurements in mam-
mals; Sherman's (1979) test of the relation between insect chromosome numbers 
and social behavior; Damuth's (1981) investigation of population density and body 
size in mammals; Martin's (1981) regression of brain weight in mammals on body 
weight; Givnish's (1982) examination of traits associated with dioecy across the 
families of angiosperms; and Armstrong's (1983) regressions of brain weight on 
body weight and basal metabolism rate in mammals. 

My intention is to point out a serious statistical problem with this approach, a 
problem that affects all of these studies. It arises from the fact that species are part 
of a hierarchically structured phylogeny, and thus cannot be regarded for statisti-
cal purposes as if drawn independently from the same distribution. This problem 
has been noticed before, and previous suggestions of ways of coping with it are 
briefly discussed. The nonindependence can be circumvented in principle if ade-
quate information on the phylogeny is available. The information needed to do so 
and the limitations on its use will be discussed. The problem will be discussed and 
illustrated with reference to continuous variables, but the same statistical issues 
arise when one or both of the variables are discrete, in which case the statistical 
methods involve contingency tables rather than regressions and correlations. 

THE PROBLEM 

Suppose that we have examined eight species and wish to know whether their 
brain size ( Y) is proportional to their body size (X). We may wish to test whether 
the slope of the regression of Yon X (or preferably of log Yon log X) is unity. 
Figure 1 shows a scatter diagram of hypothetical data. It is tempting to simply do 
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Observations across species 
are not independent, but 
contrasts across internal 
nodes are
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Synopsis Phylogenetic analyses of gene expression have great potential for addressing a wide range of questions.

These analyses will, for example, identify genes that have evolutionary shifts in expression that are correlated with

evolutionary changes in morphological, physiological, and developmental characters of interest. This will provide entirely

new opportunities to identify genes related to particular phenotypes. There are, however, 3 key challenges that must be

addressed for such studies to realize their potential. First, data on gene expression must be measured from multiple

species, some of which may be field-collected, and parameterized in such a way that they can be compared across species.

Second, it will be necessary to develop comparative phylogenetic methods suitable for large multidimensional datasets.

In most phylogenetic comparative studies to date, the number n of independent observations (independent contrasts)

has been greater than the number p of variables (characters). The behavior of comparative methods for these classic n4p

problems is now well understood under a wide variety of conditions. In studies of gene expression, and in studies based

on other high-throughput tools, the number n of samples is dwarfed by the number p of variables. The estimated

covariance matrices will be singular, complicating their analysis and interpretation, and prone to spurious results. Third,

new approaches are needed to investigate the expression of the many genes whose phylogenies are not congruent with

species phylogenies due to gene loss, gene duplication, and incomplete lineage sorting. Here we outline general

considerations of project design for phylogenetic analyses of gene expression and suggest solutions to

these three categories of challenges. These topics are relevant to high-throughput phenotypic data well beyond gene

expression.

Introduction

RNA-seq now enables inexpensive studies of gene
expression in a broad diversity of species (’t Hoen
et al. 2008; Siebert et al. 2011). To date, most such
studies have focused on making comparisons within
species. They have, for example, examined differences
in gene expression among different experimental
conditions, disease status, cell types, tissue types,
and genetic backgrounds.

Many questions of great interest, however, will
require phylogenetic comparative analyses of gene
expression across species. The phylogenetic analysis
of gene expression, both by itself and in combination
with other types of phenotypic data, will generate
biological insight in a variety of ways.

– Sets of genes with correlated evolutionary changes in
expression will reveal shared function, shared mech-
anisms regulating expression, or both.

– An investigator often knows of only one or two
genes involved in a particular biological process,
but wants to find others. These known genes will
be used as ‘‘bait’’ to identify other genes with cor-
related evolutionary changes in expression. These are
strong candidates for also being involved in the
biological process of interest.

– Significant evolutionary changes in the covariance
structure of expression data may indicate evolution-
ary changes in gene regulation, gene function, or
both.

– Gene expression will be analyzed in combination
with other data, such as physiological or morpho-
logical measurements, to identify genes with
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Species
Individual
Treatment 1

Treatment 2

A A A
1 2 3

B B B
4 5 6

C C C
7 8 9

D D D
10 11 12

A typical project design:

Dunn et al 2013 (http://dx.doi.org/10.1093/icb/ict068)

Each grey box is a sample

http://dx.doi.org/10.1093/icb/ict068


Three major challenges:
1. Measuring expression so that it 
can be compared across species.

2. Interpreting covariance when 
the number of genes greatly 
exceeds the number of species.

3. Accommodating incongruence 
between gene and species trees.
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II. Interpreting covariance



II. Interpreting covariance
We want to understand the 
relationship of expression across 
genes and relative to other 
phenotypes



In most comparative analyses: 

n > p

n number of observations 

      (eg contrasts)

p number of variables
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In comparative analyses of 
gene expression: 

n number of observations 

      (eg contrasts)

p number of variables

n << p
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II. Interpreting covariance

n
p

p

p

p

p

True 

Covariance

Contrasts Observed

Covariance

When n << p



The covariance matrix is well 
behaved when n > p

It is difficult to use and potentially 
misleading when  n << p

II. Interpreting covariance



Challenges of working with 
matrices  when                 :  n << p

- Matrices are singular (non-
invertible)
- Many spurious non-zero 
covariances

II. Interpreting covariance



If you are looking at many 
variables in a small number of 
observations, you will find 
many spurious correlations



US spending on science, space, and technology

Suicides by hanging, strangulation, and suffocation

http://www.tylervigen.com

http://www.tylervigen.com


Age of Miss America

Murders by steam, hot vapors, and hot objects

http://www.tylervigen.com

http://www.tylervigen.com
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Covariance matrix Scale

II. Interpreting covariance



Simulate evolution of these 100 
genes on a tree of 8 species

II. Interpreting covariance

Species_A

Species_F

Species_H

Species_C

Species_G

Species_E

Species_B

Species_D



II. Interpreting covariance

Species_A

Species_F

Species_H

Species_C

Species_G

Species_E

Species_B

Species_D

p=100 n=7



“True” Independent 
contrasts only

II. Interpreting covariance
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-1.0



“True” Regularization

(Luo, 2012)

II. Interpreting covariance

0.0

1.0
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0.0

1.0

-1.0
“True” Regularization


(Bickel & Levina 2008)

II. Interpreting covariance



II. Interpreting covariance

There is no getting around 
missing information when

but false positives can be 
mitigated through regularization

Take home:

n << p





Visualization



An interactive tree

http://dunnlab.org/phylotree

https://github.com/vhsiao/phylotree

Use it:

Play with the code:

https://vimeo.com/67665449
Watch a demo:

http://dunnlab.org/phylotree
https://github.com/vhsiao/phylotree
http://dunnlab.org/phylotree
http://dunnlab.org/phylotree
https://vimeo.com/67665449
http://dunnlab.org/phylotree


We make cartoons
http://nytimes.com/creaturecast

http://nytimes.com/creaturecast


Building skills



“Routine” phylogenetic analyses 
now require many skills that 
biologists are rarely trained in.



High performance computing

Programming

High throughput sample 
preparation

Stats beyond Sokal and Rohlf



LabField

Computational



Computation

To use the command line.

At least one programming language.

Efficient text handling.

How to work on remote computers.
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goals
To show you how to use general 
tools to address the day-to-day 
computational challenges faced by 
biologists.



Biology



Statistics

I posted my own handout/ cheat 
sheet:!
!

https://bitbucket.org/caseywdunn/
statistics/

https://bitbucket.org/caseywdunn/statistics/


Math

A little bit of linear algebra and 
graph theory will take you far in 
phylogenetics



Managing your 
analyses



Organization is part of the 
analyses, rather than 
something that comes after



The data analysis 
ecosystem in my lab

- Central cluster
- Google docs
- git



Analyses and storage on 
cluster



git is a:
- Distributed software revision 
control system
- Allows you to organize all lab 
software in a single central 
repository
- Can write and use software in 
the repository on any computer



Documentation
Data and analyses are a liability rather 
than an asset if they aren’t well 
documented

Documentation should be realtime, not 
something that is done after analyses 

Good documentation is a powerful 
teaching and learning tool



Documentation on 
Google Docs



Or... literate code that 
serves as analysis tool and 
documentation in one.
See:!
!

https://bitbucket.org/caseywdunn/
phylogeneticbiology/src/master/
analyses/good_programming

https://bitbucket.org/caseywdunn/phylogeneticbiology/src/master/analyses/good_programming



