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Synopsis Phylogenetic analyses of gene expression have great potential for addressing a wide range of questions.

These analyses will, for example, identify genes that have evolutionary shifts in expression that are correlated with

evolutionary changes in morphological, physiological, and developmental characters of interest. This will provide entirely

new opportunities to identify genes related to particular phenotypes. There are, however, 3 key challenges that must be

addressed for such studies to realize their potential. First, data on gene expression must be measured from multiple

species, some of which may be field-collected, and parameterized in such a way that they can be compared across species.

Second, it will be necessary to develop comparative phylogenetic methods suitable for large multidimensional datasets.

In most phylogenetic comparative studies to date, the number n of independent observations (independent contrasts)

has been greater than the number p of variables (characters). The behavior of comparative methods for these classic n4p

problems is now well understood under a wide variety of conditions. In studies of gene expression, and in studies based

on other high-throughput tools, the number n of samples is dwarfed by the number p of variables. The estimated

covariance matrices will be singular, complicating their analysis and interpretation, and prone to spurious results. Third,

new approaches are needed to investigate the expression of the many genes whose phylogenies are not congruent with

species phylogenies due to gene loss, gene duplication, and incomplete lineage sorting. Here we outline general

considerations of project design for phylogenetic analyses of gene expression and suggest solutions to

these three categories of challenges. These topics are relevant to high-throughput phenotypic data well beyond gene

expression.

Introduction

RNA-seq now enables inexpensive studies of gene

expression in a broad diversity of species (’t Hoen

et al. 2008; Siebert et al. 2011). To date, most such

studies have focused on making comparisons within

species. They have, for example, examined differences

in gene expression among different experimental

conditions, disease status, cell types, tissue types,

and genetic backgrounds.

Many questions of great interest, however, will

require phylogenetic comparative analyses of gene

expression across species. The phylogenetic analysis

of gene expression, both by itself and in combination

with other types of phenotypic data, will generate

biological insight in a variety of ways.

– Sets of genes with correlated evolutionary changes in
expression will reveal shared function, shared mech-
anisms regulating expression, or both.

– An investigator often knows of only one or two
genes involved in a particular biological process,
but wants to find others. These known genes will
be used as ‘‘bait’’ to identify other genes with cor-
related evolutionary changes in expression. These are
strong candidates for also being involved in the
biological process of interest.

– Significant evolutionary changes in the covariance
structure of expression data may indicate evolution-
ary changes in gene regulation, gene function, or
both.

– Gene expression will be analyzed in combination
with other data, such as physiological or morpho-
logical measurements, to identify genes with
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evolutionary changes in expression that are corre-
lated with evolutionary changes in specific biological
processes of interest.

– Phylogenetic analyses of gene expression will test al-
ternative hypotheses about how selection acts on ex-
pression. It will allow for rigorous tests of the
ortholog conjecture (Nehrt et al. 2011), as well as
specific models of the evolution of gene function
such as DDC (Force et al. 1999). This will also pro-
vide a much better understanding of expression neu-
tral evolution.

– Comparative analyses of gene expression across spe-
cies will be of great use even when an investigator is
concerned with only a single species. This is because
RNA-seq and other high-throughput tools are so
powerful that they often detect hundreds, or even
thousands, of genes with significant differential ex-
pression among treatments. It is still very difficult,
though, to identify which differential expression is
biologically meaningful. The most informative and
cost-effective way to understand expression data
from any particular species may be to collect similar
data from closely related species and analyze them in
a combined phylogenetic analysis.

It is not statistically valid to simply analyze the

correlation of expression across species. This is be-

cause observations of any trait (including expression)

made across multiple species are not independent,

because some species are more closely related to

each other than to others. If these evolutionary rela-

tionships between species are not taken into account,

one can be severely misled by the strong similarity

between closely related species and the many differ-

ences that are expected to arise by chance between

distantly related species. The seminal article by

Felsenstein (1985) demonstrated this problem and

introduced an ingenious solution: phylogenetically

independent contrasts. Based on the structure of

the species phylogeny, it transforms the original de-

pendent observations into a series of statistically in-

dependent contrasts. There is one independent

contrast for each of the internal nodes on the phy-

logeny. Phylogenetically independent contrasts can

then be analyzed to assess the correlation of the mea-

sured variables through the course of evolution.

Since the introduction of phylogenetically indepen-

dent contrasts, other comparative phylogenetic meth-

ods have also been developed. Phylogenetic

generalized least-squares (Grafen 1989), for example,

provide a more flexible framework for implementing

comparative phylogenetic analyses.

Ives et al. (2007) and Felsenstein (2008) have since

expanded upon the original independent contrasts to

account for variation within species. These updated

methods consider a covariance matrix for within

species variation, in addition to the covariance

matrix that describes among species variation.

There is now a rich set of methods for examining

the evolution of quantitative characters, most of

which have been developed to examine morpholog-

ical and ecological data but have not yet been applied

to functional genomic data.

To apply comparative phylogenetic tools to evolu-

tionary analyses of gene expression, we must over-

come three specific challenges. First, we must

measure and parameterize expression data so that

they can be compared across species. Second, we

must confront the statistical challenges that arise

when the number of variables under consideration

far outnumbers the observations available. Third,

new comparative methods must be developed

which can accommodate gene-specific data, such as

expression, when the phylogenies of genes are not

congruent with those of species.

There has long been interest in comparing gene

expression across species. Using microarray data,

Rifkin et al. (2003) compared differential expression

between two developmental time points across six

lineages of Drosophila. More recently, Brawand

et al. (2011) investigated the evolution of expression

in six organs across 10 species of amniotes (one bird

and nine mammals). Both studies included phyloge-

nies that were inferred from the expression data.

Neither of these studies, however, mapped the

expression data onto phylogenies or performed inde-

pendent contrasts. This potentially leaves some of

their results in question, as the observations made

in each species are not independent.

There have been other studies and reviews that

have considered various aspects of the evolution of

gene expression. Romero et al. (2012) made a survey

of the potential for comparative studies of expression

to reveal the evolution of regulatory mechanisms.

Gilad et al. (2006) reviewed the evidence for different

types of selection on expression and concluded that

stabilizing selection dominates in most cases. Bedford

and Hartl (2009) modeled the strength of stabilizing

selection on expression in seven species of Drosophila

and found it to be small though of major impact.

Zheng et al. (2011) reviewed the current under-

standing of regulatory variation among species.

Hodgins-Davis and Townsend (2009) highlighted

the importance of taking environmental effects into

account, which can greatly complicate expression

studies that consider multiple species. These broad

perspectives on the evolution of expression highlight

the great potential for phylogenetic comparative

analyses of gene expression, once key technical chal-

lenges are addressed.
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Project design

Before describing the challenges that are specific to

phylogenetic analyses of data on gene expression, it is

first necessary to address project design (Fig. 1). This

is the single most important aspect of a study on

gene expression—if the data are not collected in

such a way that they can answer the questions at

hand, then they will be useless. There are many gen-

eral considerations to take into account when design-

ing an RNA-seq study (Auer and Doerge 2010),

regardless of whether the data are to be analyzed in

a phylogenetic perspective or not. Most are the same

issues, such as replication and randomization, that

have been identified and addressed in more than a

decade of micro-array studies, although unfortu-

nately many quantitative RNA-seq studies are reca-

pitulating the problems that were identified in early

micro-array studies. There are also additional project

design issues that are specific to phylogenetic analy-

sis, which are the focus of the present considerations.

In an RNA-seq study, mRNA is isolated from each

sample and shotgun sequenced. The resulting reads

are then mapped to gene reference sequences, and

the numbers of reads that map to each gene are

counted to give quantitative indications of levels of

expression. These counts are then normalized across

samples to account for differences in sequencing ef-

forts (Robinson and Oshlack 2010; Hansen et al.

2012). There is therefore one normalized read

count for each gene for each sample.

The reference sequences to which the reads are

mapped to derive counts can be derived from fully

annotated genomes or from transcriptome assemblies

if genome sequences are not available. Transcriptome

assemblies can be based on the same data that are

used to quantify assembly, usually by assembling

across all samples prior to mapping each sample in-

dividually. In most cases, especially as the number of

samples grows, it is more cost-effective to use long-

read sequencing to assemble a high-quality reference

and short-read sequencing across samples to quantify

expression (Siebert et al. 2011).

Expression data from a single sample are not very

interesting. It cannot be related to biological varia-

tion, and it is not even possible to compare expres-

sion across genes for technical reasons described

below. Studies of gene expression therefore consider

differences in expression across multiple samples. In

general, the goal of an expression study is to identify

which genes have a greater difference in expression

between treatments than would be expected by

chance. Multiple samples are therefore collected

across multiple treatments. ‘‘Treatments’’ is used ge-

nerically here for any biological variation, whether it

is experimentally induced or not. Treatments could

represent control and pharmacological treatments,

different tissue types, different cell types, different

developmental stages, different environmental condi-

tions, or any number of other differences.

In order to have a sense of how much variation is

expected by chance, it is critical to collect replicate

samples for each treatment. Replication is not just an

expensive technical nuisance, it is the investigator’s

friend. By revealing how much variation there is

when measuring expression across samples within a

treatment, it provides a much better understanding

of how to interpret variation across samples.

Replicate samples are usually collected across in-

dividuals (or, sometimes, pools of individuals, e.g.,

clutches of embryos that are each from a single

spawning event). In some cases, each sample comes

from a different individual. This is necessary when

the treatment affects the individual as a whole, as

would be the case for a drug treatment or environ-

mental stress. In other cases, it is possible to collect

samples for different treatments from the same indi-

vidual, as when comparing expression across tissue

types. It is usually desirable to collect samples for

different treatments from the same individual when

possible, as this provides an opportunity for consid-

ering individual effects as well as the effects of

treatments.

The aspects of project design considered above

apply to all studies of expression. In a phylogenetic

study of gene expression, there is one more compo-

nent to experimental design—species (Fig. 1). Each

individual belongs to a particular species, and there

can (and should) be multiple individuals per species.

This makes it possible to look at treatment,

Fig. 1 A typical project design for phylogenetic analysis of gene

expression. The tree depicts the phylogeny of the species, and

each of the gray boxes represents a sample. A read count (i.e., an

expression measurement) is available for each gene for each

sample. In this example, there are 12 individuals sampled across 4

species. In each individual, data on expression are available for

two treatments (e.g., tissue types). In some projects, data for

different treatments may come from different individuals.

Phylogenetic analysis of gene expression 849

 at B
row

n U
niversity on N

ovem
ber 10, 2014

http://icb.oxfordjournals.org/
D

ow
nloaded from

 

http://icb.oxfordjournals.org/


individual, and species effects on levels of expression.

Ideally, samples are available for each treatment for

each species and, if possible, samples for different

treatments are taken from the same individual

(Fig. 1).

When collecting expression data from wild-caught

specimens, as is likely to be the case in many studies

that consider multiple species, there are many poten-

tial sources of variation that could complicate the

interpretation of variation in expression among and

within species (Hodgins-Davis and Townsend 2009).

This is because wild-collected specimens usually have

unknown environmental histories and genetic back-

grounds. Expression from two samples from two in-

dividuals may differ because one ate last week and

one ate an hour ago, not because the samples are

drawn from two treatments. In some cases different

species may live in different habitats, and differences

in expression between these species may be due to

differences in environment that the specimens expe-

rienced rather than to evolutionary changes in ex-

pression across species. The specifics of minimizing

variation due to these extraneous factors will differ

from study to study but are very important to con-

sider. Common-garden approaches and thorough

replication are two general strategies that should be

used when possible.

Challenge I: measuring and
parameterizing RNA-seq data so that
it can be compared across species

The problem

The normalized read counts produced by a quanti-

tative RNA-seq study are not direct measurements of

expression. These counts are proportional to expres-

sion, but they are also impacted by other effects that

can differ across genes and species. This is because

the probability of sequencing a read for a gene is

impacted by both the sequence of a gene (Hansen

et al. 2010, 2012) and its length. These effects can be

modeled with unknown species and gene-specific

counting-efficiency coefficients. For gene g in species

s, and treatment t, let kgs denote the gene and spe-

cies-specific counting efficiency, the expectation of

gene count Cgst is proportional to both kgs, and the

gene expression level Egst.

E½Cgst � ¼ kgsEgst ð1Þ

Since the counting efficiency kgs is inconsistent across

genes and species, the direct comparison using Cgst

can be misleading. This is because differences in

counts may simply be due to differences in kgs.

Imagine the trivial example in which a given gene

is twice as long in one species as in another, but the

expression level (i.e., the number of transcripts per

cell) is the same. The number of counts for this gene

will differ by a factor of two across species, even

though there has been no evolutionary change in

levels of expression. If not taken into account, this

could severely mislead comparative analyses. The

same types of impacts can be realized if a given

gene has a sequence that is sequenced more effi-

ciently than the different sequence of the same

gene in another species.

Addressing kgs is especially important when refer-

ence sequences are incomplete, as reads that map

outside the reference will not be counted toward a

gene. If the reference sequence for a gene is complete

in one species but not in another, then the number

of reads that map to the incomplete reference se-

quence will be an underestimate relative to the

number of the species with the complete transcript

prediction for the gene. As phylogenetic comparative

studies of expression are likely to include species

with reference sequences of varying quality, the abil-

ity to minimize the impacts of these differences on

the evolutionary interpretation of expression is crit-

ical. If the reference sequences for all species are

based on well-annotated genomes, it may be possible

to approximate some components of kgs. A recent

study of expression across mammals and a bird,

for example, accounted for transcript length when

normalizing RNA-seq count data (Brawand et al.

2011). It did not, however, account for differences

in sequence composition or other factors that could

contribute to kgs. This may have led, in some cases,

to evolutionary differences in gene sequences being

misinterpreted as evolutionary changes in expression,

as both will impact RNA-seq counts.

Below we outline two distinct approaches to ad-

dressing the technical challenges imposed by kgs.

Each has its own advantages and drawbacks, and

the approach chosen for a particular project will

depend on details of study design and further eval-

uation of these methods.

A solution: evolutionary analyses of expression ratios

In the first analysis approach, kgs is canceled out

within species before any comparisons are made

across species. Rather than compare counts across

species, the investigator compares ratios of expected

counts across species. Given Equation (1) above,

consider the comparison of the ratio of gene expres-

sion in tissue type 1 with tissue type 2:

E½Cgs1�

E½Cgs2�
¼

kgsEgs1

kgsEgs2

¼
Egs1

Egs2

ð2Þ
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Because kgs is in both the numerator and the denom-

inator, the ratio of counts is determined exclusively

by the ratio of expression. These ratios can then be

compared across species and genes without the con-

founding effects of kgs. This ratio is the Fold Change

(FC), which is already widely used in visualizations

of data on differential expression. FC has been com-

pared across species in an analysis of the evolution of

differential expression in Drosophila based on micro-

array data (Rifkin et al. 2003).

The advantage of this approach is that it greatly

simplifies downstream analyses since kgs is removed

prior to any comparative phylogenetic analyses. The

drawback is that, by transforming all observations to

ratios, downstream tests of significance cannot take

into consideration the absolute magnitude of counts.

The observed variance across replicates could, how-

ever, still be used to assess significance. If the treat-

ment samples are taken from the same individuals, as

in Fig. 1, the independent contrasts can be computed

from the transformed data according to Felsenstein

(2008), which accommodates multiple individuals

per species.

A solution: consider measurements from different

treatments as different characters

In the second approach, gene-specific counting effi-

ciencies are not addressed prior to comparative phy-

logenetic analyses. Rather than considering the ratio

of counts for the same gene across treatments, the

counts for each gene for each treatment are initially

considered as if they are different characters. If, for

example, there are measurements for 5000 genes in

two treatments, these measurements are treated as if

they are 10,000 different characters. The phylogenet-

ically independent contrasts of these characters are

then calculated as usual, and the covariance matrix

estimated from these contrasts. Particular cells in the

resulting covariance matrix will correspond to co-

variances between the same treatment for the same

gene (i.e., the variances), different treatments for the

same gene, the same treatment for different genes, or

different treatments for different genes. The covari-

ance matrix can then be decomposed into these

various categories, and those that are relevant to

the question at hand considered further. Since kgs

embodies sequencing efficiency, which is a technical

factor, it would be possible to borrow information

across categories that are measured under the same

technical condition to estimate and correct for kgs.

There are several advantages to this approach. It

preserves the magnitudes of the normalized counts,

which improves the ability to assess the significance

of differences in expression. It is also a very general

framework that allows for more complex experimen-

tal designs. The primary disadvantage is that it

greatly increases the dimensionality of the problem,

which in turn exacerbates the challenges described in

the next section.

Challenge II: a large number of genes
and a small number of species

The problem

In most studies that make use of phylogenetically

independent contrasts, the number n of phylogenet-

ically independent contrasts has been far greater than

the number p of variables. The behavior of these

classic n4p evolutionary problems is now well un-

derstood under a wide variety of conditions. In par-

ticular, it is possible to accurately infer all cells of the

covariance matrix, which describes the evolutionary

relationship between the variables, from the con-

trasts. In phylogenetic analyses of expression based

on high-throughput data on expression, though, the

number n of independent contrasts (i.e., the number

of species minus one) is dwarfed by the number p of

variables (the number of genes considered, if differ-

ential expression ratios are plotted onto the trees, or

the number of treatments times the number of genes,

if the counts for each gene for each treatment are

considered as separate characters). These new analy-

ses with n55p raise a variety of challenges.

The crux of the problem is that when n5p, the

information provided by the contrasts is not suffi-

cient to uniquely construct the covariance matrix

from observed data (Fig. 2). The covariance matrix

is always of size p � p. This applies to the true, but

unknown, covariance matrix, as well as to the covari-

ance matrix that is estimated from the observed data.

The matrix of observations (i.e., independent con-

trasts), however, has size n� p. When n4p, this

matrix is larger than the covariance matrix and can

contain enough information to uniquely infer each

element of the covariance matrix. When n5p, this

matrix is smaller than the covariance matrix and the

elements of the inferred covariance matrix cannot be

uniquely determined.

In essence, when n55p the true covariance

matrix is being squeezed through the much smaller

data matrix and then expanded back out to the

observed covariance matrix (Fig. 2). It is analogous

to compressing and then expanding a digital

photograph. If the original photograph is a thousand

by a thousand pixels and you compress it to a for-

mat that is a thousand elements by ten elements,

there is no way to uniquely reconstruct each pixel

Phylogenetic analysis of gene expression 851
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of all possible original photographs. The missing

information must be interpolated, and the resulting

image may differ substantially from the original

image.

More formally, when n5p the estimated covari-

ance matrix will be singular. This means that the

rows of the matrix will not be independent of each

other, and that some cells may not be accurately

inferred. Singular matrices are not invertible, which

means that many basic linear algebra manipulations

cannot be carried out exactly. There are several

important implications of this. Some common statis-

tical procedures cannot be performed on singular

covariance matrices. It also means that the number

of principal components that could be derived

from the estimated covariance matrix will be

determined by the number of independent observa-

tions, not the number of variables. A covariance

matrix of size p � p could have up to p principal

components (one corresponding to each eigen

vector). In the singular matrices described above,

however, only n of these will correspond to non-

zero eigen values.

A solution

To address the n5p challenge in the context of phy-

logenetic analyses of data on gene expression, we

propose to adapt a recently developed and powerful

statistical framework, matrix regularization. Com-

pared with alternative approaches, such as principal

component analysis, regularization has advantages in

computational speed, interpretability, robustness,

and good power in small sample sizes (Hastie et al.

2009). These regularization approaches try to match

the observed data with a set of most likely patterns

arising from a model. They remain data-driven be-

cause the target pattern is general enough that only

significant correlations will be retained by the regu-

larization methods.

Fig. 3 presents the result of simulation analyses,

comparing the true covariance matrix (Fig. 3a) with

inferred covariance matrices (Fig. 3b–d). We consid-

ered 100 variables (which could each be the ratio of

expression of 100 genes in two treatments) on an

eight-taxon tree. The source code for these analyses

is available at https://bitbucket.org/caseywdunn/

sicb2013.

It is clear that the covariance matrix derived di-

rectly from the independent contrasts (Fig. 3b) is

extremely noisy in comparison to the true covariance

matrix that was used to simulate the data. Strong

covariance (both negative and positive) is spuriously

detected between genes that have no true covariance.

Although strong covariance is recovered for genes

that do indeed have strong covariance (see the

upper left of Fig. 3b), some genes with moderate

covariance are found to have nearly zero covariance.

This noise is expected since the n� p independent

contrast matrix does not have enough information

to uniquely estimate the p � p covariance matrix

(Fig. 2).

Here we consider two methods of regularization,

convex minimization (Luo 2011) and thresholding

(Bickel and Levina 2008). Thresholding is more con-

servative than convex minimization, with fewer false

positives but many more false negatives. In convex

minimization, covariance matrix is decomposed into

two components. The first component is attributed

to the effects of unmeasured factors (e.g., environ-

mental effects and regulation pathways) and the

second component is attributed to strong pairwise

gene-expression correlations after accounting for

the effects of unmeasured factors. The statistical

model behind this decomposition is related to

other popular models, including principal compo-

nent analysis and surrogate variable analysis (Leek

and Storey 2007), but generalizes to exploit the

Fig. 2 An illustration of relative matrix dimensions in compara-

tive analyses. n is the number of observations (independent

contrasts) and p is the number of variables (characters) measured

in each observation. (a) n4p, so the independent contrasts

matrix is larger than the covariance matrices and it is possible to

uniquely estimate the true covariance matrix. This is the case for

most comparative studies to date, which consider many more

species than variables. (b) n5p, so the independent contrasts

matrix is smaller than the covariance matrices and it is not

possible to uniquely estimate the true covariance matrix. This is

the situation for phylogenetic comparative analyses of RNA-seq

expression data, as well as other high-throughput phenotype data.

852 C. W. Dunn et al.
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covariance structures in terms of both eigen values/

eigen vectors and matrix entries. In thresholding,

only strong (both positive and negative) pairwise

gene correlations are retained, which parallels the

second component of convex minimization but with-

out accounting for unmeasured factors. Both regu-

larization methods require input parameters on the

regularization strength trading off false positives and

false negatives, and we here only consider the theo-

retical choices as illustrations. Additional statistical

research is needed for designing robust, interpretable,

and data-driven ways for choosing the regularization

strength in this context.

These results indicate that regularization can, at

least in part, overcome some of the challenges that

arise in the comparative phylogenetic analysis of

high-dimensional functional genomic data. The

exact approach that is taken for each study will

depend on the goals. If the investigator would like

to identify a small number of genes with high effect

and avoid false positives, then a conservative regu-

larization approach such as thresholding (Bickel and

Levina 2008) would be appropriate. If the goal is to

identify the greatest number of genes that covary

with a particular phenotypic character, then a less

conservative approach such as convex minimization

(Luo 2011) would be appropriate. If no regulariza-

tions are applied, great care must be taken in inter-

preting covariances, even when they are inferred to

be quite strong.

The limitations of these regularization approaches

include that they presume many elements of the

covariance matrix to be zero or that the covariance

matrix is in a lower dimensional space (e.g., that the

matrix is sparse or low rank) in general. Regulariza-

tion may result in an inferred covariance matrix that

is not in the same subspace as the true matrix. The

extent of regularization can be chosen based on data,

for example by cross-validation (Hastie et al. 2009).

However, the optimal way of selecting the regulari-

zation is still an open and challenging problem in

statistics, though there were many successful exam-

ples (Hastie et al. 2009). The extent of these limita-

tions for the present application will only be

apparent as these approaches are applied to real data.

Challenge III: accommodating
duplication and loss of genes

The problem

In the analyses above, we assumed that each species

had exactly the same set of genes. In reality, genes

are duplicated and lost through the course of evolu-

tion. This leads to the expansion, refinement, and

even complete loss of gene families in different spe-

cies through time. As a result, genes have phyloge-

netic histories that are not always the same as the

phylogenetic histories of the species under consider-

ation (Fig. 4).

Previous high-throughput studies of gene expres-

sion across species have focused on the subset of

genes that have only strict orthologs (Rifkin et al.

2003; Brawand et al. 2011). This approach greatly

simplifies analyses but discards a large fraction of

Fig. 3 Simulation analyses of correlation matrix reconstruction. The evolution of expression of 100 genes was simulated on an eight-

taxon phylogeny. The legend indicates the magnitude of correlation. The true covariance matrix is block-diagonal (a). The other three

matrices (b–d) show the results of alternative approaches to reconstructing the correlation matrix. The correlation matrix inferred

directly from the independent contrasts has spurious high and low correlations for many genes that do not have covariance (b).

Regularization of matrix b reduces the number of these false positives (c and d). Convex minimization (c; Luo 2011) is less conservative

than thresholding (d; Bickel and Levina 2008).
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the data and precludes the investigation of many

phenomena of broad interest, such as the evolution

of gene expression following gene duplication.

A solution

Several methods that reconcile gene phylogenies

with species phylogenies have recently been devel-

oped (Akerborg et al. 2009; Arvestad et al. 2009;

Sennblad and Lagergren 2009; Rasmussen and Kellis

2010; Wu et al. 2012). These tools label each node

in a gene phylogeny as either a speciation event or

a gene duplication event. By definition, the specia-

tion nodes of the gene trees each correspond to

particular nodes in the species tree. This means

that a common ontology can be used for these

speciation nodes across all gene trees and the spe-

cies tree. Each duplication node may be unique to

a particular gene tree, as when a new copy of a

particular gene arises by tandem duplication. Such

unique duplication events must be named individ-

ually. It may also be that there are duplication

events that are shared by multiple genes, such as

the duplication of a whole genome. If there is ad-

ditional external information that allows these types

of duplications to be labeled in each gene tree, then

a common name can be used for the shared

duplication node across all gene trees. In any

particular gene tree, the same speciation node, or

shared duplication node, may be present multiple

times.

Once each node in each gene tree is labeled as a

speciation, shared duplication, or unique duplica-

tion, it is possible to proceed with phylogenetically

independent contrasts across all gene trees. The cal-

culation of contrasts associated with speciation

events is the most straightforward (Fig. 4). For

each internal node in the species tree, identify the

two descendent nodes as in a typical contrast analysis

(e.g., the descendants of F are B and G in Fig. 4a).

Then, find the corresponding internal node (in

Fig. 4b, nodes j and l correspond to speciation

event F) and descendent nodes (in Fig. 4b, nodes

b, e, and f correspond to node B in the species

tree, and node n corresponds to speciation node

G) in each gene tree and calculate the contrasts

based on the difference in expression values as re-

constructed on the gene tree. One complication is

that the number of nodes for a given speciation

event will not be consistent across gene trees. There

are various ways to address this, the most simplistic

being to take the average contrast value across the

different nodes of a gene tree that correspond to the

same speciation event.

In this way, the investigator builds up the con-

trasts that correspond to each internal node on the

species tree across all gene trees. This results in a

n� p contrast matrix, where n is the number of in-

ternal nodes on the species tree and p is the number

of gene trees. The p � p covariance matrix can then

be estimated from this matrix of contrasts. A similar

approach could be taken for calculating contrasts

across shared duplication events. Covariance cannot

be computed across unique duplication events since

they are gene-specific. Variances (after normalizing

by branch length) could be compared across the dif-

ferent categories of nodes to see whether significantly

larger changes are realized for one category of nodes

relative to the others.

Depending on the objectives of a study, it may be

desirable to consider only a subset of the contrasts

Fig. 4 Calculating contrasts associated with speciation events on a gene tree that includes paralogs. (a) The species phylogeny. Nodes

representing species and speciation events are labeled with capital letters. (b) The gene phylogeny, which includes paralogs and

orthologs. Black nodes indicate speciation events; white nodes indicate gene duplications. The tips and internal nodes of the gene

phylogeny are labeled with lowercase letters. The species for which each gene is drawn is indicated by a capital letter, and internal

speciation nodes are labeled with a capital letter for the corresponding node in the species tree. (c) Table of contrasts that correspond

to speciation events. There are five contrasts in the gene tree that together represent all three speciation events in the species tree.

These contrasts can then be combined across gene trees to form an independent-contrasts matrix, in which the values for each gene

tree correspond to a column and the rows correspond to species nodes (when there are multiple values from a given species node in a

gene tree, they could be averaged before being added to the contrasts table). Calculating the contrast for node l (indicated by *) is

complicated by the fact that one of the descendent nodes is a duplication. Such contrasts could be skipped or accommodated by more

complicated calculations.
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that are made on a gene tree. This is because a given

contrast on the species tree may also span one or

more duplication events on the gene tree. This is

the case for contrast l in Fig. 4b and c. This means

that the observed differences may be due to the ef-

fects of duplication as well as evolution between spe-

cies. To avoid these potentially confounding

complications, the investigator could consider only

the contrasts in which the descendent node is con-

nected to the internal node by unbroken branches

that do not include duplication nodes.

This general approach could be expanded to ac-

commodate other sources of incongruence between

gene trees and species trees, such as incomplete lin-

eage sorting.

Conclusion

Although there are multiple challenges that must be

addressed to enable comparative phylogenetic analy-

ses of high-throughput data on gene expression, they

are not insurmountable. Some solutions, such as the

use of count ratios rather than counts, can be im-

mediately implemented with off-the-shelf tools.

Others will require further refinement and imple-

mentation with new tools.

Several of the approaches presented here are ap-

plicable to any high-dimensional quantitative pheno-

typic data, not just gene expression. They will

therefore be useful for interpreting other categories

of functional genomic and proteomic data, as well as

the high-throughput approaches just now being ap-

plied to morphology, development, and physiology.

It is likely that the greatest biological insight will

come from combining these different types of data

into single analyses, allowing for the examination of

functional genomic and other phenotypic data in a

single evolutionary framework.
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