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Molecular phylogenetics is the study of evolutionary relationships between
biological sequences, often to infer the evolutionary relationships of organisms.
These studies require many analysis components, including sequence assem-
bly, identification of homologous sequences, gene tree inference, and species
tree inference. At present, each component is usually treated as a single step in
a linear analysis, where the output of each component is passed as input to the
next as a point estimate. Here we outline a generative model that helps clarify
assumptions that are implicit to phylogenetic workflows, focusing on the
assumption of low relative entropy. This perspective unifies currently disparate
advances, and will help investigators evaluate which steps would benefit the
most from additional computation and future methods development.

Molecular Phylogenetics and Information Communication

Molecular phylogenetic analyses have multiple components, including assembly (see Glossary)
of raw sequence data into gene sequences, identification of homologous sequences across
and within species, multiple sequence alignment, inference of gene trees, and integration of
information across gene trees to infer species trees. How each of these analysis components
is implemented and integrated is an important decision in designing a phylogenetic study [1]. In
most phylogenetic analyses, each analysis component is treated as a separate step in a linear
workflow, in which results from each component are passed as input to the next component.
Each result is usually communicated as a point estimate. For example, a single hypothesis on
gene homology is estimated and passed on to indicate which gene sequences belong to the
same gene tree.

There are multiple limitations, each of which reflects simplifying assumptions about the data and
methods, with phylogenetic workflows that pass only a single hypothesis in a single direction
between each analysis component. These workflows cannot accommodate the uncertainty
present in the data or introduced in the inference process. In addition, a strictly stepwise
workflow does not allow for interactions between analysis components when different stages
cannot be solved independently. Biologists have long recognized these limitations in the context
of particular analysis steps, including identification of homologous sequences [2], multiple
sequence alignment [3], and species tree inference [4]. This has spurred important methods
development to relax some of these limitations, including the use of Bayesian approaches to
accommodate uncertainty when inferring phylogenetic trees from multiple sequence alignments
[5] and the simultaneous estimation of gene and species trees [6-9].

While there has been much productive work on understanding and relaxing these limitations at
particular points in phylogenetic analyses, there has been little work on the systematic evaluation
of these limitations across the entire phylogenetic workflow. An integrated workflow perspective
can make several types of important contributions. First, a better understanding of workflow
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Current phylogenetic analyses are
implemented as multistep, linear work-
flows where intermediate analysis
steps generate and pass on point esti-
mates of unobserved variables. This
linear structure and minimal information
communication strategy embody three
implicit assumptions: () the order of the
analysis steps is biologically justified, (ii)
a Markovian dependency structure,
and (ji) low relative entropy of results
of each analysis step.

There is evidence that these assump-
tions, in particular low relative entropy,
are frequently violated in empirical stu-
dies with potential detrimental effects in
phylogenetic analyses.

A generative model and probabilistic
framework provide a unified perspec-
tive to assess the costs and benefits of
relaxing these assumptions, help iden-
tify what methods and tools are miss-

ing, and provide a context for
evaluating  priorites ~ for  future
development.
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assumptions will lead to better interpretation of the results of current tools. Second, this
integrated perspective can provide clear criteria for prioritizing future methods development.
In particular, improving communication (Box 1) between largely independent analysis compo-
nents can relax some simplifying assumptions. Improved communication reduces the accumu-
lation of errors across components [10], accommodates interactions between components,
provides more information to the investigator, and enables statistically grounded interpretations
of results. These improvements come at the cost of increased engineering and computational
costs, and this integrated perspective provides a way to better evaluate the trade-offs between
these costs and the benefits to the investigator.

Here we present a unified framework for understanding information communication in molecular
phylogenetic analyses that brings together advances on particular analysis components, helps
identify what methods and tools are missing, and provides a holistic context for evaluating which
of these should be the highest priority for future development. This will lead to more informed
decisions about how to allocate computational resources to different analysis components to
maximize investigator insight. This framework is grounded in a generative model for raw
sequence reads that reflects the biological and technical processes that underlie the observed
data. This model provides the unified perspective needed to state the assumptions implicit to
information communication between phylogenetic analysis components (Box 2), and places

Box 1. Three Communication Strategies in Data Analyses

Most data analyses, including phylogenetic analyses, require multiple components that each address a subproblem in a
larger analysis challenge. These analysis components often consist of separate tools that were designed to work together
or were repurposed in new ways so that they could be combined into novel workflows. Data and intermediate analysis
results must be communicated between these components for them to work together. While much effort has been put
into the effectiveness and efficiency of each of these components, how they communicate and what information they
share is a major scientific and engineering challenge that often receives less technical and theoretical attention. Here we
consider three specific communication approaches between analysis components in scientific computing.

The first is to communicate a minimum amount of information by propagating a point estimate in a single direction.
Sometimes this hypothesis is chosen according to ad hoc criteria, and other times it is statistically explicit (such as the
selection of a phylogenetic hypothesis by maximum likelihood). This is the most common communication strategy
currently implemented in phylogenetic workflows.

The second approach is to communicate more information by propagating multiple hypotheses in a single direction. This
allows uncertainty and error to be communicated from one analysis component to another. In phylogenetics, this
approach has been used for inferring a species tree given a sample of gene trees [80]. This strategy has also been
explored in other fields, such as cognitive psychology and hydrological modeling [81,82].

The third approach is to combine analysis components into a single component that simultaneously infers multiple
hypotheses that were otherwise estimated independently and sequentially. This approach fully accommodates the
uncertainty present in the data and generated during the inference process, as well as the non-independence of solutions
between analysis components. Some phylogenetic species tree methods use this approach [8].

Changing the information communicated between analysis components can require that the analysis components
themselves are re-engineered. Many tools that are critical to phylogenetic analysis are built to input and output only point
estimates. Most assemblers output single assembly hypotheses. Multiple sequence aligners accept only a single
estimate of each gene sequence and output only one possible multiple sequence alignment. The simplest approach
to implementation is to iteratively run these existing tools on a distribution of inputs, and then propagating the distribution
of outputs to later steps. This comes with minimal implementation costs since the tools can be used as-is, but is
computationally very expensive. To make improved communication tractable, tools will need to be re-engineered to
intrinsically accommodate multiple hypotheses or to simultaneously infer multiple steps.

The way that hypotheses are chosen has important implications for their interpretation, regardless of how those
hypotheses are communicated to other analysis steps. Hypotheses are often chosen according to ad hoc criteria,
such as minimizing gap penalties in multiple sequence alignment. If they are instead selected according to statistically
explicit criteria, such as an approximation of the posterior distribution under an explicit probabilistic model, their
interpretation is much clearer.

Cell

Glossary

Analysis components: specific
inference processes within an
analysis workflow to estimate random
variables. In a phylogenetic analysis,
these components include assembly,
homology evaluation, multiple
sequence alignment, gene tree
inference, and species tree inference.
Assembly: the technical process of
aligning and merging fragments of
DNA sequences to estimate the
original DNA sequence.

Generative model: a hypothesis of
how the observed data are generated
through a joint probability distribution
of all random variables of interest.
Homologous sequences: genes, or
stretches of DNA, that are
descendants from a common
ancestral sequence. Homologous
sequences are drawn from the same
gene tree.

Homology evaluation: in this
context, the technical process of
identifying homologous sequences,
typically through phenetic
comparisons of sequence similarity
as a proxy for evolutionary descent
from a common ancestor.
Incomplete lineage sorting: if the
interval between speciation events is
shorter than the time it takes for gene
lineages to go to fixation in the
population, then the phylogenetic
relationships between gene lineages
will not necessarily reflect species
relationships.

Lineage sorting: the biological
process by which lineages are sorted
between populations. In a speciation
event, for example, an original
population is split into two, and only
a subset of lineages from the original
population are sorted into the
populations of each descendent
species. In this way, a speciation
event can impose structure on the
lineages in a gene phylogeny.
Markovian dependence: a
dependency structure such that
inference for the current state
depends directly only on neighboring
states.

Multiple sequence alignment: the
inference of site homology within sets
of homologous sequences by
partitioning sequence variation into
indels (insertions and deletions) and
site substitutions.

Point estimate: a single hypothesis
that is used to summarize the
distribution of the results of an
analysis component.
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these assumptions in the context of a general probabilistic framework that facilitates statistical
interpretation of results (Box 3).

A Molecular Phylogenetic Generative Model Describes How Unobserved
Processes Generate Observed Sequence Data

A generative model is an explicit hypothesis of the natural and technical processes that produce
observed data. Because generative models are based in probability theory (Box 3), they provide
principled means to describe the entities and processes investigators seek to understand. An
explicit generative model therefore clarifies the goals and role of each process in an analysis
workflow. Generative models can also be used to guide simulation, which is helpful to evaluate
methods and make decisions about project design before data collection. Generative models
have been employed with considerable success in many fields [11-17].

A generative model can be represented graphically (Figure 1, orange). The nodes are random
variables that describe the observed data and unobserved biological entities that the
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Figure 1. Graphical Representations of a Generative Model and Phylogenetic Analyses, under the Assump-
tion of Markovian Dependence. Large open circles indicate biological entities, which can be described as random
variables in the inference process. Edges (lines) represent processes. In the case of the generative model (orange), these are
biological and technical processes that give rise to the entities. In the case of the inference process (blue), they are analysis
processes that consist of one or more analysis components. Random variables that represent intermediate analysis
products that are specific to inference are shown with small circles. The assumption of Markovian dependence specifies
that variables depend only on neighboring variables, relaxing it would give a more general model wherein there are more
connections in addition to those between adjacent variables.
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Random variable: variable that
takes on values randomly according
to a probability distribution.
Relative entropy: measure of the
amount of information lost when
approximating the probability
distribution P with the distribution Q.
When Q is a good approximation of
P, relative entropy is low; when Q is
not a good approximation of P,
relative entropy is high. Here, Q is
often a single point estimate.
Sensitivity analysis: an analysis of
the impact on the results from
changing data, models, methods, or
other features of analysis.
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Box 2. Implicit Assumptions of Phylogenetic Workflows

All phylogenetic analyses make assumptions to simplify implementation and reduce computational costs. Often these
assumptions are implicit. Making them explicit helps the investigator interpret results, understand the limitations of
different approaches, better understand the differences between methods, and prioritize methods development. Here
we describe three assumptions that are central to phylogenetic workflows.

Assumption 1. Biologically Sensible Ordering of Steps

The generative model is a hypothesis of the technical and biological processes of data generation. The phylogenetic
analysis workflow attempts to reverse this generative process to reconstruct biological unknowns from the data. To be
biologically justified, the ordering of analysis steps should therefore be the reverse of the processes in the generative
model. The ordering of analysis steps therefore reflects assumptions about the generative model. The ordering of steps in
the generative model presented here (Figure 1) is based on extensive understanding of the processes at play, so the
ordering of analysis steps is well justified.

Assumption 2. Markovian Dependency

In probability theory, a Markov process is a process such that inference of the current state depends directly only on its
neighboring states. A linear phylogenetic analysis workflow assumes a Markovian dependency structure because each
analysis component only needs information from the previous component and/or the next component. For example,
under Markovian dependency homology can theoretically be inferred from only the assembly and/or the multiple
sequence alignment, and the multiple sequence alignment can be inferred from only the homology and/or the gene tree.

Assumption 3. Low Relative Entropy

Passing only a single hypothesis from one analysis component to another assumes that the result of an analysis
component can be reasonably summarized by a single point estimate. This depends critically on the probability
distribution of the result. Some probability distributions can be adequately summarized by a single estimate, others
cannot. If the resulting distribution is unimodal and has low variance, then a single estimate such as the mean is a good
approximation of other results that would be drawn from the distribution if it were resampled (Figure 2). If instead the
resulting distribution is multimodal and has high variance, then repeat sampling would generate widely different results
and none of them is a good description of the distribution as a whole. This has been shown for phylogenetic trees and for
local sequence alignment [383,84].

In information theory, the concept of relative entropy [50,85] describes these differences in terms of how well one
distribution is represented by another. It helps us understand when a point estimate is sufficient to describe a distribution
and when more information is required. A low relative entropy means that the representation distribution is close to the
target distribution (Figure 2). Current phylogenetic analysis workflows assume low relative entropy for most analysis
components because they pass only a point estimate (e.g., a single multiple sequence alignment) from one component to
another.

investigator would like to know about. The edges are natural and technical processes that
connect these entities and describe their dependence.

A generative model for molecular phylogenetics must incorporate multiple random variables as
well as evolutionary, cellular, and technical processes (Figure 1, orange). Explicit generative
models have already been described for some subcomponents of a phylogenetic workflow,
such as the generation of gene sequences given a phylogenetic tree and an explicit model of
molecular evolution [18], or the generation of gene trees given a species tree [9,10,19]. A
generative model can be extended to an entire phylogenetic analysis, from species tree through
to the generation of raw sequence data. To simplify presentation, we here assume Markovian
dependence (Box 2) in the generative model, which gives it a linear structure. The origin of life
and speciation—extinction result in species trees that describe the structure of populations of
individuals (ST, Figure 1). The origin of new genes (e.g., gene duplication, gene loss, and
horizontal gene transfer between species) results in gene trees (GT, Figure 1) [20]. The species
trees impose structure on these gene trees through lineage sorting [19]. If lineage sorting is
complete and there is no horizontal gene transfer, then nodes in the gene trees correspond
directly to nodes on the species tree. Otherwise there is not a one-to-one correspondence [21].
Processes of molecular evolution, including insertion, deletion, and substitution, result in the
diversity of gene sequences (GS, Figure 1) present at the tips of these gene trees. These
sequences can be further edited within the lifespan of an organism through cellular processes
such as programmed genome rearrangements [22,23] and RNA splicing in transcriptomes.
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Box 3. A Probabilistic Perspective on Integrated Phylogenetic Analyses

The five random variables in the phylogenetic analysis workflow (Figure 1) - GS (gene sequences), H (homology),
M (multiple sequence alignment), GT (gene trees), ST (species tree) - all concern high dimensional unknowns. A fully
general model assumes that these five random variables are all directly related to one another. For example, to compute
the probability of any random variable given D (data), say ST, we have to sum over all the values of the other unknowns:

P(STID) =>"> "> P(GS,H,M,GT,ST|D)
GS H M GT
=Y P(ST|GT,M,H,GS,D) > P(GT|M,H,GS,D) Y P(M|H,GS,D) > P(H|GS,D)P(GS|D)
GT M H GS

Current linear phylogenetic workflows make the assumption that these random variables form a Markov chain (Box 2).
Specifically, this model specifies that

P(GS,H,M,GT,ST|D) = P(ST|GT)P(GT|M)P(M|H)P(H|GS)P(GS|D)

and that for any particular random variable, for example M,

P(M|H, GS, D) = P(M|H)

and
P(M|GT,ST) = P(M|GT)
Estimating the probability of ST|D then becomes

P(ST|D) = P(STIGT) > _ P(GTIM) > P(MIH) > P(H|GS) Y P(GS|D)
GT M H GS

A Markov model is specified in the forward direction, for example, the model specifies the dependence of homology on
the gene sequence, P(H|GS, D) = P(H|GS). However, this specification also produces a dependence in the backward

direction as can be seen using Bayes rule: P(GS|H) = %. Generative inference procedures account for this

bidirectional dependence using a forward algorithm to account for upstream effects and a backward algorithm to
account for downstream effects [86]. The fact that current phylogenetic workflows employ only backward steps (e.g.,
gene trees depend on assembled gene sequences, but sequence assembly does not use any information about gene
trees) imposes important limitations. For example, one of the hardest problems in sequence assembly is correctly
deconvolving repeats. One biological source of repeats is gene duplication. Since a phylogenetic workflow includes gene
tree inference, this analysis component could help the assembler correctly assemble regions that repeat due to gene
duplication, but this strategy is not currently employed.

In addition, the typical phylogenetic workflow makes the strong assumption of low relative entropy (Box 2), so that
summing over all possible hypotheses is not required, as the probability of the point estimate is close to 1. Given these
two assumptions, estimating ST|D becomes

P(ST|D) = P(ST|GT)P(GT|M)P(M|H)P(H|GS)P(GS|D)~1

This equation embodies the linear workflow (Figure 1): the simplest possible inference process of species trees from the
data that passes minimal information, that is, a point estimate, from one analysis component to the next (Box 1) under the
assumptions that there is a biologically relevant ordering of steps, the steps form a Markov chain, and that relative entropy
between the point estimate and the true distribution is low (Box 2).

When the investigator isolates molecules from the organism and prepares them for sequencing
they are often further modified through fragmentation, ligation, and errors introduced during
amplification. Finally, sequencing produces raw reads (D, Figure 1) that are estimates of the
sequences in these prepared samples. Sequencing instruments introduce errors during this
process and have ascertainment biases that make it more difficult to observe some sequences
than others [24]. The raw reads (D) are the observed data, and the other random variables (GS,
GT, and ST) are unknowns that the investigator seeks to estimate from the observed data.

Simulation tools have already been developed for most of the steps in this generative process,
including raw sequence reads from gene sequences [25-27], gene sequences given gene trees
[28-31], and gene trees given species trees [32-34]. Even so, there is not yet an integrated tool
for simulating raw data under all the processes in a phylogenetic analysis that biologists are
regularly interested in.
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Figure 2. Two Probability Density Functions Representing Random Variables. The relative entropy between the
magenta (left) distribution and the point estimate is high due to the high variance and a complex shape of the distribution. No
single estimate is a good predictor of other values drawn from this distribution, but two point estimates can provide a much
better approximation. The relative entropy between the cyan (right) distribution and the point estimate is low. A single
estimate drawn from this distribution is a good predictor of other values.

A Molecular Phylogenetic Workflow Makes Inferences about Unobserved
Variables from Observed Sequence Data

The goal of an analysis workflow is essentially to reverse a generative model. While a generative
model explains how observed data are generated from unobserved variables, an analysis
workflow estimates unobserved variables from the observed data. In the case of linear models
and workflows, there is an antiparallel relationship between the generative model (Figure 1,
orange) and the analysis workflow (Figure 1, blue) [9].

Here, we describe a phylogenetic analysis workflow that is typical of many currently imple-
mented, although often differences exist in goal and design details between studies. Different
data acquisition approaches can simplify various analysis components. Targeted enrichment,
for example, greatly simplifies assembly and homology evaluation, but at the cost of only
providing data for preselected genes [35].

The first analysis step begins by estimating gene sequences (GS, Figure 1) from the observed data
(D, Figure 1). This analysis process is referred to as assembly. It identifies which sites in different
reads correspond to the same sites in the original molecules, identifies the relative location of reads
to each other, corrects technical errors introduced by sample preparation and sequencing, and
accommodates and annotates some aspects of cellular editing (such as splice variation) [36,37].
Changes in sequencing technology have had major impacts on assembly methods [36,38]. It is
anticipated, for example, that read lengths will be much longer in the near future, even extending to
the full length of the biological molecules under study [39-41]. This will make it much simpler to
identify the location of reads, but does not obviate assembly as it is still necessary to identify which
reads are derived from the same molecules and to correct technical error.

The next analysis challenge is to proceed from gene sequences (GS, Figure 1) to gene trees (GT,

Figure 1). Most phylogenetic tools assume homology, so the first step in this process is to identify
homologous sequences through phenetic comparisons of sequence similarity [42]. This is
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typically implemented in a few steps. First, pairwise sequence comparisons and clustering are
used to identify homologous sequences, that is, sequences that are tips in the same gene tree.
Some sequence homology tools compare all sequences to each other [43], others compare new
seguences to a curated set of preselected sequences [44]. Next, site homology is evaluated
within each set of homologous sequences by multiple sequence alignment. Multiple sequence
alignment partitions the variation observed among homologous sequences into two categories:
variation due to insertion and deletion (which results in sites placed in different columns) and
variation due to substitution (which is contained within a single column) [45]. Homology
evaluation and multiple sequence alignment generate two random variables not present in
the generative model, which do not represent estimates of entities that occur in nature (H, M,
Figure 1). With the alignments in hand, the investigator can proceed to the core of a phylogenetic
study — phylogenetic inference. Given the gene sequences and a model of molecular evolution,
phylogenetic inference tools evaluate alternative hypotheses regarding the evolutionary relation-
ships between the sequences [18,46,47]. For historical and computational reasons these tools
typically model only site substitution, and the insertion and deletion events identified in multiple
seguence alignment are not evaluated.

Inferring species trees (ST, Figure 1) requires both the identification of gene tree features that
correspond to features of the species tree (i.e., nodes due to speciation that result in orthologs) as
well as the integration of information from many gene trees to learn about their shared history
constrained through speciation and lineage sorting. These steps are implemented in many different
ways in different linear studies, including consensus trees [48] and matrix concatenation [49]
approaches.

The Implicit Assumptions of Phylogenetic Workflows

Several implicit assumptions (Box 2) are usually made to simplify analyses and reduce their
computational cost, resulting in the simple linear type of workflow described above. Making
these assumptions explicit is critical to understanding the limitations imposed on results by
current methods and establishing future research priorities. First, it is assumed that the specific
ordering of the analysis components sufficiently describes the processes that generated the
data. Second, it is assumed that the dependence between random variables forms a Markov
chain, that is, the inference process for each analysis component depends only on its two
neighbors. These two assumptions justify the direction of information propagation and the
consideration at each analysis component of only the results of the preceding component. In the
phylogenetic analysis workflow outlined above, only a single hypothesis from each analysis
component is passed on to the next component. This reflects a third implicit assumption: a
single result from each analysis component is sufficient to summarize all that is needed from all
the analysis components that precede it. In probability theory, this is described as an assumption
of low relative entropy (Figure 2) [50].

Expilicitly stating these assumptions raises the question of whether they are routinely violated in
real-world analyses and if these violations jeopardize the interpretation of the results. These are
empirical as well as theoretical questions. The ordering of the analysis steps is justified inasmuch as
it is equivalent to the backward algorithm of a simplified linear generative model. The Markov chain
assumption could be violated in a number of ways. For example, duplication events within a gene
tree are a source of repeats encountered in assembly. Hence a dependency exists between gene
trees and gene sequence assembly, and the assembly process could benefit from consideration of
gene tree inference. In addition, population size can simultaneously impact multiple processes,
including speciation, rates of molecular evolution, and incomplete lineage sorting.

There is good reason to believe that the third assumption of low relative entropy is frequently
violated in ways that negatively impact phylogenetic analyses. There is often considerable
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uncertainty regarding each step in a phylogenetic analysis [2-4,51], and discarding information
about other hypotheses that also find support from the data can mislead analyses and greatly
complicates their biological interpretation. This concern was in part the motivation for the field of
phylogenetics moving away from single point estimates of trees toward the generation and
presentation of whole distributions of results, such as Bayesian posterior distributions of trees
and bootstrap replicates [52]. This makes relaxing the assumption of low relative entropy a
particularly high priority, and is therefore the focus of this manuscript.

Two different communication strategies (Box 1) can relax the assumption of low relative entropy.
One is to propagate multiple hypotheses from one component to another, providing a distribu-
tion of hypotheses. Another is to jointly estimate multiple components, allowing for a compre-
hensive assessment of uncertainty contributed by the components.

Existing Approaches that Relax the Assumption of Low Relative Entropy

The phylogenetic analysis workflow described above (Figure 1, blue) represents one extreme — it
communicates the minimal amount of information in the simplest possible way. Even so, it has
been widely adopted due to two key practical advantages: it is the most computationally
tractable (since all but one hypothesis is discarded at each step) and it is technically the most
straightforward to implement (since it can be built from existing tools). Implementing this
workflow as a software pipeline has varied from completely manual analyses, where information
is formatted and passed to each component by hand or semiautomated tools, to fully automated
workflows that also track and summarize results [43,53-55].

Most of the recent work on improving communication has focused on the joint estimation of
gene trees and a species tree [6,7,56]. This focus is motivated in part by the fact that gene trees
and species trees should not necessarily be expected to be congruent [57], and that the
incongruence can only be correctly accounted for by simultaneously estimating both gene and
species relationships. Incomplete lineage sorting has been the primary focus of most recent
work in this area, largely due to the mature mathematical and statistical foundation provided by
coalescent theory [6,58-60]. Nevertheless, recent work now also accounts for other sources of
incongruence such as gene duplication and loss [7,9,61-63]. An interesting recent approach to
this problem is the work of de Oliveira Martins et al. [8], which considers a Bayesian posterior
distribution of gene trees during species tree estimation.

Efforts to improve communication at earlier steps have been largely neglected. Current
approaches treat homology evaluation (the identification of homologous sequences), multiple
sequence alignment (the identification of homologous sites in homologous sequences), and
phylogenetic tree inference (identification of phylogenetic trees that best explain the variation in
homologous sites) as separate problems. Better integration of multiple sequence alignment and
phylogenetic tree inference has been one focus of work [64]. Several approaches have been
developed to improve communication between these two analysis components by co-estimat-
ing multiple sequence alignment and gene trees inference under parsimony [65], maximum
likelihood [66,67], and Bayesian approaches [68].

Identifying Future Priorities for Improved Communication

There are clear benefits to relaxing the assumption of low relative entropy through improved
information communication between analysis components, including the ability to evaluate
results according to statistically explicit criteria and compare support for alternative hypotheses.
These potential benefits, however, come with costs that must be considered when setting
priorities for future work. The cost of implementation can be very high, as many tools will have to
be re-engineered to accommodate multiple hypotheses or information from non-neighboring
analysis components. Most investigators already struggle with the computational costs of
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existing tools, so understanding the relative benefit of increasing the cost of any particular step is
critical to making informed decisions about which investments will have the greatest benefit.

Sensitivity analyses can play an important role in evaluating the benefits of relaxing or
strengthening assumptions. If the investigator relaxes an assumption by a far more computa-
tionally expensive approach but this has little impact on the result, then the cost of adopting the
more general approach might not be justified.

As discussed earlier, recent advances have largely focused on improving information commu-
nication between gene tree and species tree inference. Recent reviews have addressed these
advances in detail [9,69,70]; hence, we here focus on opportunities to relax the assumption of
low relative entropy by improving information communication between upstream analysis
components.

Relaxing the assumption of low relative entropy of assembly output will likely have great benefit to
researchers [51]. Most assemblers choose a single hypothesis according to ad hoc criteria,
assuming it to be an adequate point estimate of the original gene sequence (e.g., [71-73]). This
reduces computational cost, but at the price of discarding uncertainty in the results and
neglecting important biological information such as variation due to heterozygosity or somatic
polymorphisms. Generating multiple assembly hypotheses for each gene and propagating them
to homology evaluation would create the opportunity to assess alternative assembly hypotheses
from a more informed position, where they can be compared to homologous sequences from
other species. Rather than only evaluate assembly hypotheses according to information avail-
able within each species, information would be borrowed across species.

For example, chimeric gene sequences, formed by the spurious fusion of sequences from two
different genes, are particularly common and problematic [74]. They confound homology
evaluation by creating spurious sequence similarities between disparate gene families. These
spurious similarities provide signatures during homology evaluation (e.g., high degree centrality
in graphs of hypothesized homologous sequences) that make it possible to identify them and
remove them [75]. Retaining multiple gene sequence hypotheses and passing them all forward
would allow the analysis workflow to identify and retain non-chimeric gene sequences at this
later stage.

Implementing this improved communication strategy between assembly and homology evalu-
ation requires minimal cost when analyzing transcriptome data. Transcriptome assemblers
already generate multiple assembly hypotheses per gene to accommodate splice variants;
however, some of these variants are assembly errors rather than true alternative splice variants
[74]. In addition, homology evaluation tools will not require much re-engineering to accept
multiple assembly hypotheses, as it would just be a matter of performing the same sequence
similarity comparisons but on a larger dataset. Recent advances in assembly methods will also
facilitate this approach with non-transcriptome data. There has been growing interest in moving
to a statistically grounded approach to sequence assembly [51,76,77]. These tools provide a
distribution of gene sequences, rather than a single assembly, that captures uncertainty about
the original biomolecule sequence [78,79]. These are not yet computationally viable for analyses
of large real-world datasets, although they could soon be.

Concluding Remarks

As the focus on phylogenetic workflow development transitions from improving individual
analysis components to better integrating those components, it will be necessary to prioritize
those developments that will have the most positive impact (see Outstanding Questions). A
generative model and probabilistic framework provide the perspective needed to describe and
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Outstanding Questions

Phylogenetic workflows make strong
assumptions about order, depen-
dence, and relative entropy. These
assumptions are likely violated in most
analyses. To what extent do these vio-
lations negatively impact analysis
results?

Which steps in a phylogenetic analysis
would benefit most from improved
communication that relaxes one or
more of these assumptions? This
question requires the assessment of
trade-offs among implementation
costs, computational costs, and
improved results.

Existing approaches are already strug-
gling to keep up with rapidly growing
datasets. Are there more assumptions
we can impose to speed up computa-
tion in phylogenetic analyses without
negatively impacting the quality of
results?



Cell

evaluate different potential improvements. At one extreme is the current approach of passing a
single hypothesis between steps in linear analyses, discarding all alternative hypotheses. This
approach is simple to implement and minimizes computational demands, but relies on an
assumption of low relative entropy that is routinely violated in ways that negatively impact
analyses. At the other extreme is the simultaneous estimation of all unknowns, including gene
sequences, gene trees, and species trees. This approach makes no assumptions about
Markovian dependence, ordering of analysis steps, or low relative entropy, but is computation-
ally prohibitive. In practice, the optimal approach to molecular phylogenetic analyses will be
between these extremes. Sensitivity analyses and probability theory provide an informative guide
for finding where that optimal point will be, and for making well-informed decisions about the
relative benefits of allocating additional engineering and computational resources to different
analysis steps.
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